150 resultados para project financing
Resumo:
ISU’s proposed research will (1) develop methods for designing clean and efficient burners for low‐Btu producer gas and medium‐Btu syngas, (2) develop catalysts and flow reactors to produce ethanol from medium‐Btu synthesis gas, and (3) upgrade the BECON gasifier system to enable medium‐Btu syngas production and greatly enhanced capabilities for detailed gas analysis needed by both (1) and (2). This project addresses core development needs to enable grain ethanol industry reduce its natural gas demand and ultimately transition to cellulosic ethanol production.
Resumo:
This document contains a discussion of the reasons why the project did not succeed. A detailed discussion of the steps taken by the Iowa Department of Transportation to make the experiment work are contained in this document, along with recommendations for future projects.
Resumo:
Audit report on the Iowa Water Pollution Control Works Financing Program and the Iowa Drinking Water Facilities Financing Program, joint programs of the Iowa Finance Authority and the Iowa Department of Natural Resources for the year ended June 30, 2013
Resumo:
This report describes a new approach to the problem of scheduling highway construction type projects. The technique can accurately model linear activities and identify the controlling activity path on a linear schedule. Current scheduling practices are unable to accomplish these two tasks with any accuracy for linear activities, leaving planners and manager suspicious of the information they provide. Basic linear scheduling is not a new technique, and many attempts have been made to apply it to various types of work in the past. However, the technique has never been widely used because of the lack of an analytical approach to activity relationships and development of an analytical approach to determining controlling activities. The Linear Scheduling Model (LSM) developed in this report, completes the linear scheduling technique by adding to linear scheduling all of the analytical capabilities, including computer applications, present in CPM scheduling today. The LSM has tremendous potential, and will likely have a significant impact on the way linear construction is scheduled in the future.
Resumo:
The Iowa Department of Transportation (IDOT) has been requiring Critical Path Method (CPM) schedules on some larger or more schedule sensitive projects. The Office of Construction's expectations for enhanced project control and improved communication of project objectives have not been fully met by the use of CPM. Recognizing that the current procedures might not be adequate for all projects, IDOT sponsored a research project to explore the state-of-the-art in transportation scheduling and identify opportunities for improvement. The first phase of this project identified a technique known as the Linear Scheduling Method (LSM) as an alternative to CPM on certain highway construction projects. LSM graphically displays the construction process with respect to the location and the time in which each activity occurs. The current phase of this project was implemented to allow the research team the opportunity to evaluate LSM on all small groups of diverse projects. Unlike the first phase of the project, the research team was closely involved in the project from early in the planning phase throughout the completion of the projects. The research strongly suggests that the linear scheduling technique has great potential as a project management tool for both contractors and IDOT personnel. However, before this technique can become a viable weapon in the project management arsenal, a software application needs to be developed. This application should bring to linear scheduling a degree of functionality as rich and as comprehensive as that found in microcomputer based CPM software on the market today. The research team recommends that the IDOT extend this research effort to include the development of a linear scheduling application.
Resumo:
This report describes the continuation of the development of performance measures for the Iowa Department of Transportation (DOT) Offices of Construction. Those offices are responsible for administering transportation construction projects for the Iowa DOT. Researchers worked closely with the Benchmark Steering Team which was formed during Phase I of this project and is composed of representatives of the Offices of Construction. The research team conducted a second survey of Offices of Construction personnel, interviewed numerous members of the Offices and continued to work to improve the eight key processes identified during Phase I of this research. The eight key processes include Inspection of Work, Resolution of Technical Issues, Documentation of Work Progress and Pay Quantities, Employee Training and Development, Continuous Feedback for Improved Contract Documents, Provide Safe Traffic Control, External/Public Communication, and Providing Pre-Letting Information. Three to four measurements were specified for each key process. Many of these measurements required opinion surveys of employees, contractors, and others. During Phase II, researchers concentrated on conducting surveys, interviewing respondents to improve future surveys, and facilitating Benchmark Steering Team monthly meetings. Much effort was placed on using the information collected during the first year's research to improve the effectiveness and efficiency of the Offices of Construction. The results from Process Improvement Teams that studied Traffic Control and Resolution of Technical Issues were used to improve operations.
Resumo:
The IDPH Public Health Tracking Program is an excellent way to collect data related to various indicators for Iowans, but those looking for national statistics or data from other states may want to check out the Health Indicators Warehouse (healthindicators.gov). Run and maintained by the CDC’s National Center for Health Statistics, this site is a centralized source for national, state, and county data for a wide variety of indicators. The data is available to the public, and can be accessed either through the tables and charts directly on the website, or indicators can be downloaded to use in a spreadsheet. Once on the site, users are able to search for their desired data either by topic or geographic region. Filters can then be applied to the chosen field to narrow down the user’s search and obtain the preferred statistics. In addition, users are also able to search for indicators derived from state and federal health indicator initiatives: County Health Rankings, Community Health Status Indicators, Healthy People 2020, and CMS Community Indicators. The warehouse provides an overview of each indicator after the user has made their selection. This overview includes information on how the data was calculated and what characteristics are being represented. For example, percent of binge drinking adults is prefaced in the overview that data was based on the question: “Considering all types of alcoholic beverages, how many times during the past 30 days did you have [5 for men, 4 for women] or more drinks on an occasion?" Data is viewable either in the basic table format, chart format, or for some indicators it is possible to view it in terms of a national map. The Health Indicators Warehouse updates indicators as data becomes available, but the collection of years varies amongst the indicators. Nonetheless, this site is a useful resource to anyone looking for comparative indicators throughout the nation or is interested in one of the hundreds of indicators housed by the site. For more information or to check out what the warehouse has to offer visit: http://healthindicators.gov/
Resumo:
This book, published jointly by the American Society of Agronomy, Soil Science Society of American and Iowa State University presents the papers that were given at a symposium held in Ames, Iowa, on Nov. 30 and Dec. 1, 1965 on the general topic of plant environment and efficient water use.
Resumo:
This final report to the Iowa Watershed Improvement Review Board by the City of Remsen Utilities consists of accomplishments made by the Remsen Utilities as per this agreement. The City of Remsen Utilities did in fact purchase approximately 27 acres of land lying upstream of the city’s water well field. The land was purchased from Mr. Larry Rodesch and Mr. Rich Harpenau for the purpose of removing nitrates from Remsen’s water source and establishing native prairie grasses to assist in this removal.
Resumo:
The findings in this summary are based on the Iowa Barriers to Prenatal Care project. Ongoing since 1991, the purpose of this project is to obtain brief, accurate information about women delivering babies in Iowa hospitals. Specifically, the project seeks to learn about women’s experiences getting prenatal or delivery care during their current pregnancy. Other information is included which may be pertinent to health planners or those concerned with the systematic development of health care services. This project is a cooperative venture of all of Iowa’s maternity hospitals, the University of Northern Iowa Center for Social and Behavioral Research, and the Iowa Department of Public Health. The Robert Wood Johnson Foundation funded the first three years of this project. The current funding is provided by the Iowa Department of Public Health. The Director is Dr. Mary Losch, University of Northern Iowa Center for Social and Behavioral Research. The Coordinator for the project is Rodney Muilenburg. The questionnaire is distributed to nearly ninety maternity hospitals across the state of Iowa. Nursing staff or those responsible for obtaining birth certificate information in the obstetrics unit are responsible for approaching all birth mothers prior to dismissal and requesting their participation in the study. The questionnaire takes approximately ten minutes to complete. Completed questionnaires are returned to the University of Northern Iowa Center for Social and Behavioral Research for data entry and analysis. Returns are made monthly, weekly, or biweekly depending on the number of births per week in a given hospital. Except in the case of a mother who is too ill to complete the questionnaire, all mothers are eligible to be recruited for participation. The present yearly report includes an analysis of large Iowa cities, African American mothers, and a trend analysis of the last ten years. Also presented in this report is a frequency analysis of all variables included in the 2012 questionnaire. Unless otherwise noted, all entries reflect percentages. Please note that because percentages were rounded, total values may not equal 100%. Data presented are based upon 2012 questionnaires received to date (n = 23,674). All analyses reflect unweighted percentages of those responding.
Resumo:
A network of 25 sonic stage sensors were deployed in the Squaw Creek basin upstream from Ames Iowa to determine if the state-of-the-art distributed hydrological model CUENCAS can produce reliable information for all road crossings including those that cross small creeks draining basins as small as 1 sq. mile. A hydraulic model was implemented for the major tributaries of the Squaw Creek where IFC sonic instruments were deployed and it was coupled to CUENCAS to validate the predictions made at small tributaries in the basin. This study demonstrates that the predictions made by the hydrological model at internal locations in the basins are as accurate as the predictions made at the outlet of the basin. Final rating curves based on surveyed cross sections were developed for the 22 IFC-bridge sites that are currently operating, and routine forecast is provided at those locations (see IFIS). Rating curves were developed for 60 additional bridge locations in the basin, however, we do not use those rating curves for routine forecast because the lack of accuracy of LiDAR derived cross sections is not optimal. The results of our work form the basis for two papers that have been submitted for publication to the Journal of Hydrological Engineering. Peer review of our work will gives a strong footing to our ability to expand our results from the pilot Squaw Creek basin to all basins in Iowa.
Resumo:
Granular shoulders need to be maintained on a regular basis because edge ruts and potholes develop, posing a safety hazard to motorists. The successful mitigation of edge-rut issues for granular shoulders would increase safety and reduce the number of procedures currently required to maintain granular shoulders in Iowa. In addition, better performance of granular shoulders reduces the urgency to pave granular shoulders. Delaying or permanently avoiding paving shoulders where possible allows more flexibility in making investments in the road network. To stabilize shoulders and reduce the number of maintenance cycles necessary per season, one possible stabilizing agent—acidulated soybean oil soapstock—was investigated in this research. A pilot testing project was conducted for selected problematic shoulders in northern and northeastern Iowa. Soapstock was applied on granular shoulders and monitored during application and pre- and post-application. Application techniques were documented and the percentage of application success was calculated for each treated shoulder section. As a result of this research, it was concluded that soybean oil soapstock can be an effective stabilizer for granular shoulders under certain conditions. The researchers also developed draft specifications that could possibly be used to engage a contractor to perform the work using a maintenance-type construction contract. The documented application techniques from this project could be used as guidance for those who want to apply soapstock for stabilizing granular shoulders but might not be familiar with this technique.
Resumo:
Reflective cracking in hot mix asphalt (HMA) overlays has been a common cause of poor pavement performance in Iowa for many years. Reflective cracks commonly occur in HMA overlays when deteriorated portland cement concrete is paved over with HMA. This results in HMA pavement surfaces with poor ride quality and increased transportation maintenance costs. To delay the formation of cracks in HMA overlays, the Iowa Department of Transportation (Iowa DOT) has begun to implement a crack-relief interlayer mix design specification. The crack-relief interlayer is an asphalt-rich, highly flexible HMA that can resist cracking in high strain loading conditions. In this project, the field performance of an HMA overlay using a one inch interlayer was compared to a conventional HMA overlay without an interlayer. Both test sections were constructed on US 169 in Adel, Iowa as part of an Iowa DOT overlay project. The laboratory performance of the interlayer mix design was assessed for resistance to cracking from repeated strains by using the four-point bending beam apparatus. An HMA using a highly polymer modified binder was designed and shown to meet the laboratory performance test criteria. The field performance of the overlay with the interlayer exceeded the performance of the conventional overlay that did not have the interlayer. After one winter season, 29 percent less reflective cracking was measured in the pavement section with the interlayer than the pavement section without the interlayer. The level of cracking severity was also reduced by using the interlayer in the overlay.
Resumo:
Audit report on the Iowa Water Pollution Control Works Financing Program and the Iowa Drinking Water Facilities Financing Program, joint programs of the Iowa Finance Authority and the Iowa Department of Natural Resources, for the year ended June 30, 2014
Resumo:
In the administration, planning, design, and maintenance of road systems, transportation professionals often need to choose between alternatives, justify decisions, evaluate tradeoffs, determine how much to spend, set priorities, assess how well the network meets traveler needs, and communicate the basis for their actions to others. A variety of technical guidelines, tools, and methods have been developed to help with these activities. Such work aids include design criteria guidelines, design exception analysis methods, needs studies, revenue allocation schemes, regional planning guides, designation of minimum standards, sufficiency ratings, management systems, point based systems to determine eligibility for paving, functional classification, and bridge ratings. While such tools play valuable roles, they also manifest a number of deficiencies and are poorly integrated. Design guides tell what solutions MAY be used, they aren't oriented towards helping find which one SHOULD be used. Design exception methods help justify deviation from design guide requirements but omit consideration of important factors. Resource distribution is too often based on dividing up what's available rather than helping determine how much should be spent. Point systems serve well as procedural tools but are employed primarily to justify decisions that have already been made. In addition, the tools aren't very scalable: a system level method of analysis seldom works at the project level and vice versa. In conjunction with the issues cited above, the operation and financing of the road and highway system is often the subject of criticisms that raise fundamental questions: What is the best way to determine how much money should be spent on a city or a county's road network? Is the size and quality of the rural road system appropriate? Is too much or too little money spent on road work? What parts of the system should be upgraded and in what sequence? Do truckers receive a hidden subsidy from other motorists? Do transportation professions evaluate road situations from too narrow of a perspective? In considering the issues and questions the author concluded that it would be of value if one could identify and develop a new method that would overcome the shortcomings of existing methods, be scalable, be capable of being understood by the general public, and utilize a broad viewpoint. After trying out a number of concepts, it appeared that a good approach would be to view the road network as a sub-component of a much larger system that also includes vehicles, people, goods-in-transit, and all the ancillary items needed to make the system function. Highway investment decisions could then be made on the basis of how they affect the total cost of operating the total system. A concept, named the "Total Cost of Transportation" method, was then developed and tested. The concept rests on four key principles: 1) that roads are but one sub-system of a much larger 'Road Based Transportation System', 2) that the size and activity level of the overall system are determined by market forces, 3) that the sum of everything expended, consumed, given up, or permanently reserved in building the system and generating the activity that results from the market forces represents the total cost of transportation, and 4) that the economic purpose of making road improvements is to minimize that total cost. To test the practical value of the theory, a special database and spreadsheet model of Iowa's county road network was developed. This involved creating a physical model to represent the size, characteristics, activity levels, and the rates at which the activities take place, developing a companion economic cost model, then using the two in tandem to explore a variety of issues. Ultimately, the theory and model proved capable of being used in full system, partial system, single segment, project, and general design guide levels of analysis. The method appeared to be capable of remedying many of the existing work method defects and to answer society's transportation questions from a new perspective.