114 resultados para Gravel
Resumo:
During the processing of limestone to produce commercial aggregates, a significant amount of waste limestone screenings is produced. This waste material cannot be used in highway construction because it does not meet current highway specifications. The purpose of this research was to determine if a waste limestone screenings/emulsion mix could be used to construct a base capable of supporting local traffic. A 1.27 mile section of roadway in Linn County was selected for this research. The road was divided into seven sections. Six of the sections were used to test 4" and 6" compacted base thicknesses containing 2.5%, 3.5%, and 4.5% residual asphalt contents. The seventh section was a control section containing untreated waste limestone screenings.
Resumo:
Joint Publications from Iowa Engineering Experiment Station - Bulletin No. 190 and Iowa Highway Research Board - Bulletin No. 19. This bulletin is a report on the development of bituminous paving mixtures containing various local materials and asphaltic binders. The laboratory investigations described in this bulletin were performed as part of Iowa Highway Research Board project HR-20, "Treating Loess, Fine Sands, and Limestone Dusts With Liquid Binders." This project was awarded to the Iowa Engineering Experiment Station of Iowa State University in 1952, and continued to June, 1958.
Resumo:
This booklet is a compilation of notes taken during motor grader operators workshops held at some 20 different locations throughout Iowa during the last two years. It is also the advice of 16 experienced motor grader operators and maintenance foremen (from 14 different counties around Iowa), who serve as instructors and assistant instructors at the "MoGo" workshops. The instructors have all said that they learn as much from the operators who attend the workshops as they impart. Motor grader operators from throughout Iowa have shown us new, innovative and better ways of maintaining gravel roads. This booklet is an attempt to pass on some of these "tips" that we have gathered from Iowa operators. It will need to be revised, corrected, and added to based on the advice we get from you, the operators who do the work here in Iowa.
Resumo:
The Iowa DOT has been using rapid freezing in air and thawing in water to evaluate coarse aggregate durability in concrete since 1962. Earlier research had shown that the aggregate pore system was a major factor in susceptibility to D-cracking rapid deterioration. There are cases were service records show rapid deterioration of concrete containing certain aggregates on heavily salted primary roads and relatively good performance with the same aggregate in secondary pavements with limited use of deicing salt. A five-cycle salt treatment of the coarse aggregate prior to durability testing has yielded durability factors that correlate with aggregate service records on heavily salted primary pavements. X-ray fluorescence analyses have shown that sulfur contents correlate well with aggregate durabilities with higher sulfur contents producing poor durability. Trial additives that affect the salt treatment durabilities would indicate that one factor in the rapid deterioration mechanism is an adverse chemical reaction. The objective· of the current research is to develop a simple method of determining aggregate susceptibility to salt related deterioration. This method of evaluation includes analyses of both the pore system and chemical composition.
Resumo:
The major objective of this research project is to utilize thermal analysis techniques in conjunction with x-ray analysis methods to identify and explain chemical reactions that promote aggregate related deterioration in Portland cement concrete. The first year of this project has been spent obtaining and analyzing limestone and dolomite samples that exhibit a wide range of field service performance. Most of the samples chosen for the study also had laboratory durability test information (ASTM C 666, method B) that was readily available. Preliminary test results indicate that a strong relationship exists between the average crystallite size of the limestone (calcite) specimens and their apparent decomposition temperatures as measured by thermogravimetric analysis. Also, premature weight loss in the thermogravimetric analysis tests appeared to be related to the apparent decomposition temperature of the various calcite test specimens.
Resumo:
The objective of this research project was to evaluate the construction and service performance of ammonium phosphate/fly ash (APFA) treated base courses of crushed fines and/or unprocessed sand. Specific test results related to construction of the test sections were included in the 1987 construction report by Iowa State University. The performance of the experimental sections is dealt with in this final report. This 1986 project demonstrated that in all cases the control sections utilizing a Type B base experienced dramatically less cracking in the surface than the APFA treated base sections. The cost per mix and subsequent surface maintenance costs for the APFA base sections, especially those having a substantial amount of limestone, were higher than the Type B base control sections. This type of construction may prove to be economical only when petroleum product costs escalate.
Resumo:
The coefficients of relative strength (CORS) of base courses for use in the American association state highway officials (AASHO) interim guide for the design of flexible pavements are determined here. Based on (1) volumetric strain--axial strain relationships at minimum volume, and (2) effective stress ratio-cohesion relationships at maximum effective stress ratio, CORS were determined from the results of laboratory triaxial tests on both asphalt-treated and untreated aggregate base course materials. The researchers conclude that volumetric strain-axial strain at minimum volume appear to be appropriate parameters for determining CORS.
Resumo:
This report is a brief overview of the recent Iowa Department of Transportation research in the area of durability of Portland cement, concrete under the direction of Wendeli Dubberke. Present plans are to publish a more detailed report on low Portland cement concrete- durability research in January, 1985.
Resumo:
Portland Cement Concrete (PCC) pavement has served the State of Iowa well for many years. The oldest Iowa pavement was placed in LeMars in 1904. Beginning in 1931, many miles of PCC pavement were built to "get out of the mud.” Many of these early pavements provided good performance without deterioration for more than 50 years. In the late 1950's, Iowa was faced with severe PCC pavement deterioration referred to as D cracking. Research identified the cause of this deterioration as crushed limestone containing a bad pore system. Selective quarrying and ledge control has alleviated this problem. In 1990, cracking deterioration was identified on a three year old pavement on us 20 in central Iowa. The coarse aggregate was a crushed limestone with an excellent history of performance in PCC pavement. Examination of cores showed very few cracks through the coarse aggregate particles. The cracks were predominately confined to the matrix. The deterioration was identified as alkali-silica reactivity (ASR) by a consultant.