134 resultados para 1988-1997
Resumo:
Comprehensive Annual Financial Report For University of Northern Iowa.
Resumo:
Comprehensive Annual Financial Report For University of Northern Iowa.
Resumo:
The Leopold Center was created by the Iowa Legislature as part of the Iowa Groundwater Protection Act of 1987. The Leopold Center believes contribute to a healthy ways of thinking about markets for Iowa farmers, a better understanding of local ecosystems, public policies and economic practices, and partnerships with consumers.
Resumo:
The Leopold Center was created by the Iowa Legislature as part of the Iowa Groundwater Protection Act of 1987. The Leopold Center believes contribute to a healthy ways of thinking about markets for Iowa farmers, a better understanding of local ecosystems, public policies and economic practices, and partnerships with consumers.
Resumo:
The Leopold Center was created by the Iowa Legislature as part of the Iowa Groundwater Protection Act of 1987. The Leopold Center believes contribute to a healthy ways of thinking about markets for Iowa farmers, a better understanding of local ecosystems, public policies and economic practices, and partnerships with consumers.
Resumo:
The Leopold Center was created by the Iowa Legislature as part of the Iowa Groundwater Protection Act of 1987. The Leopold Center believes contribute to a healthy ways of thinking about markets for Iowa farmers, a better understanding of local ecosystems, public policies and economic practices, and partnerships with consumers.
Resumo:
“This book traces the development of transportation in Iowa from territorial days to the 19 80s. It shows the evolution of the transportation systems; how they originated, progressed and functioned; their structural organizations; effectiveness in overcoming obstacles, under the guidance of state and federal legislation; and their impact upon the development of the state.” – From the Prologue, page xiii
Resumo:
The Marsh Rainbow Arch Bridge is a patented bridge design by James Barney Marsh, a graduate of Iowa State College of Agriculture and Mechanic Arts (now Iowa State University). Around the turn of the 20th Century, reinforced concrete was introduced in Iowa as an important new bridge construction material. Marsh used the new technology to encased steel truss arches in concrete to produce a sturdy yet esthetic arch bridge. This booklet touches on the important aspects of Marsh's life, business and industrial contributions.
Resumo:
This report documents work undertaken in the demonstration of a low-cost Automatic Weight and Classification System (AWACS). An AWACS procurement specification and details of the results of the project are also included. The intent of the project is to support and encourage transferring research knowledge to state and local agencies and manufacturers through field demonstrations. Presently available, Weigh-in-Motion and Classification Systems are typically too expensive to permit the wide deployment necessary to obtain representative vehicle data. Piezo electric technology has been used in the United Kingdom and Europe and is believed to be the basic element in a low-cost AWACS. Low-cost systems have been installed at two sites, one in Portland Cement Concrete (PCC) pavement in Iowa and the other in Asphaltic Cement Concrete (ACC) pavement in Minnesota to provide experience with both types of pavement. The systems provide axle weights, gross vehicle weight, axle spacing, vehicle classification, vehicle speed, vehicle count, and time of arrival. In addition, system self-calibration and a method to predict contact tire pressure is included in the system design. The study has shown that in the PCC pavement, the AWACS is capable of meeting the needs of state and federal highway agencies, producing accuracies comparable to many current commercial WIM devices. This is being achieved at a procurement cost of substantially less than currently available equipment. In the ACC pavement the accuracies were less than those observed in the PCC pavement which is concluded to result from a low pavement rigidity at this site. Further work is needed to assess the AWACS performance at a range of sites in ACC pavements.
Resumo:
Although the overall objective for undertaking this project is to help decide on the best way to produce CMA, the tasks to be performed deal primarily with acetic acid itself. The objectives of our part of this project can be restated here: A. Evaluate the cost and composition of potential low-cost fermentation substrates that are available in large quantity at central locations in Iowa. B. Compare the nutritional and physiological properties of a variety of homoacetogenic bacteria relative to acetic acid production, based on information available in the literature. C. Using both of these pools of information, evaluate the possibilities for use of substrates for acetic acid production that are significantly cheaper than the previous sugar, starch hydrolysate or whole corn based studies; also, compare the different acetogens encountered with the most commonly discussed acetogen, Clostridium thermoaceticum; arrive at conclusions on 1-3 of the best agriculture-derived substrates that should be further examined, and on 1-3 of the best organisms to evaluate experimentally. D. Collect experimental data at the tube and fermentor scale on 1-2 of the possibilities in C above. E. Comment on our understanding of acetic acid production possibilities from our perspective as microbiologists, and provide all this above information to Paul Peterschmidt for him to consider for his portion of this report. F. In addition, we would like to point out the possible advantage of examining the use of an agricultural by-product, corn steep liquor, as a direct, non-fermented feedstock for a non-acetic acid deicer.
Resumo:
This Plan Reading Course was developed by the Department of Civil and Construction Engineering of Iowa State University under contract with the Iowa Highway Research Board, Project HR-324. It is intended to be an instructional tool for Iowa DOT, county and municipal employees within the state of Iowa. Under this contract, a previous Plan Reading Course, prepared for the Iowa State Highway Commission in 1965, has been completely revised using a new format, new plans, updated specifications, and new material. This course is a self-taught course consisting of two parts; Highway Plans, and Bridge and Culvert plans. Each part consists of a self-instruction book, a set of plans, a question booklet, and an answer booklet. This is the self-instruction book for the Bridge and Culvert Plans part of the course. The example structures included in this part of the course are a prestressed concrete beam bridge and a reinforced concrete box culvert.
Resumo:
It is generally accepted that high density polyethylene pipe (HDPE) performs well under live loads with shallow cover, provided the backfill is well compacted. Although industry standards require carefully compacted backfill, poor inspection and/or faulty construction may result in soils that provide inadequate restraint at the springlines of the pipes thereby causing failure. The objectives of this study were: 1) to experimentally define a lower limit of compaction under which the pipes perform satisfactorily, 2) to quantify the increase in soil support as compaction effort increases, 3) to evaluate pipe response for loads applied near the ends of the buried pipes, 4) to determine minimum depths of cover for a variety of pipes and soil conditions by analytically expanding the experimental results through the use of the finite element program CANDE. The test procedures used here are conservative especially for low-density fills loaded to high contact stresses. The failures observed in these tests were the combined effect of soil bearing capacity at the soil surface and localized wall bending of the pipes. Under a pavement system, the pipes' performance would be expected to be considerably better. With those caveats, the following conclusions are drawn from this study. Glacial till compacted to 50% and 80% provides insufficient support; pipe failureoccurs at surface contact stresses lower than those induced by highway trucks. On the other hand, sand backfill compacted to more than 110 pcf (17.3 kN/m3) is satisfactory. The failure mode for all pipes with all backfills is localized wall bending. At moderate tire pressures, i.e. contact stresses, deflections are reduced significantly when backfill density is increased from about 50 pcf (7.9 kN/m^3) to 90 pcf (14.1 kN/m^3). Above that unit weight, little improvement in the soil-pipe system is observed. Although pipe stiffness may vary as much as 16%, analyses show that backfill density is more important than pipe stiffness in controlling both deflections at low pipe stresses and at the ultimate capacity of the soil-pipe system. The rate of increase in ultimate strength of the system increases nearly linearly with increasing backfill density. When loads equivalent to moderate tire pressures are applied near the ends of the pipes, pipe deflections are slighly higher than when loaded at the center. Except for low density glacial till, the deflections near the ends are not excessive and the pipes perform satisfactorily. For contact stresses near the upper limit of truck tire pressures and when loaded near the end, pipes fail with localized wall bending. For flowable fill backfill, the ultimate capacity of the pipes is nearly doubled and at the upper limit of highway truck tire pressures, deflections are negligible. All pipe specimens tested at ambient laboratory room temperatures satisfied AASHTO minimum pipe stiffness requirements at 5% deflection. However, nearly all specimens tested at elevated pipe surface temperatures, approximately 122°F (50°C), failed to meet these requirements. Some HDPE pipe installations may not meet AASHTO minimum pipe stiffness requirements when installed in the summer months (i.e. if pipe surface temperatures are allowed to attain temperatures similar to those tested here). Heating of any portion of the pipe circumference reduced the load carrying capacity of specimens. The minimum soil cover depths, determined from the CANOE analysis, are controlled by the 5% deflection criterion. The minimum soil cover height is 12 in. (305 mm). Pipes with the poor silt and clay backfills with less than 85% compaction require a minimum soil cover height of 24 in. (610 mm). For the sand at 80% compaction, the A36 HDPE pipe with the lowest moment of inertia requires a minimum of 24 in. (610 mm) soil cover. The C48 HDPE pipe with the largest moment of inertia and all other pipes require a 12 in. (305 mm) minimum soil cover.
Resumo:
TPMS is proposed as a distributed, PC-based system for automating two processes required for road improvements in Iowa: a) the annual preparation, submission, and approval of road improvement programs. b) the ongoing process of developing plans and obtaining approval for projects to be let for bids.
Resumo:
Stopping and turning maneuvers on high traffic volume asphalt cement concrete surfaced roads and streets often cause distortion of the pavement. Distortion may show up as excessive rutting in the wheel path, shoving of the pavement and/or rippling of the surface. Often times repeated corrective work such as cold milling or heater planing is required in these areas to maintain the pavement surface in a reasonable condition. In recent years polymer additives have been developed for asphalt cement concrete paving mixes that show promise in improving the inplace stability of the pavements. AC-13 (Styrelf 13) available from Bitucote Products Company, St. Louis, Missouri is an asphalt cement that has been modified by an additive to exhibit characteristics of very high stability in asphalt mixes.
Resumo:
Recently, a number of roads have begun to exhibit the onset of deterioration at relatively early ages. Since this deterioration appears to be the result of materials issues, data concerning raw materials, design, and paving conditions have been collected and analyzed for correlation between independent variables and deterioration. This analysis shows that there is a positive and statistically significant correlation between deterioration and the following variables: alkali and sulfate content of the cementitious materials, impermeable base course, paving temperature, and the presence of fly ash. This study also concludes that there is a significant need for improvement in data collection and maintenance by many organizations responsible for the production of concrete