125 resultados para final degree project
Resumo:
Mixture materials, mix design, and pavement construction are not isolated steps in the concrete paving process. Each affects the other in ways that determine overall pavement quality and long-term performance. However, equipment and procedures commonly used to test concrete materials and concrete pavements have not changed in decades, leaving gaps in our ability to understand and control the factors that determine concrete durability. The concrete paving community needs tests that will adequately characterize the materials, predict interactions, and monitor the properties of the concrete. The overall objectives of this study are (1) to evaluate conventional and new methods for testing concrete and concrete materials to prevent material and construction problems that could lead to premature concrete pavement distress and (2) to examine and refine a suite of tests that can accurately evaluate concrete pavement properties. The project included three phases. In Phase I, the research team contacted each of 16 participating states to gather information about concrete and concrete material tests. A preliminary suite of tests to ensure long-term pavement performance was developed. The tests were selected to provide useful and easy-to-interpret results that can be performed reasonably and routinely in terms of time, expertise, training, and cost. The tests examine concrete pavement properties in five focal areas critical to the long life and durability of concrete pavements: (1) workability, (2) strength development, (3) air system, (4) permeability, and (5) shrinkage. The tests were relevant at three stages in the concrete paving process: mix design, preconstruction verification, and construction quality control. In Phase II, the research team conducted field testing in each participating state to evaluate the preliminary suite of tests and demonstrate the testing technologies and procedures using local materials. A Mobile Concrete Research Lab was designed and equipped to facilitate the demonstrations. This report documents the results of the 16 state projects. Phase III refined and finalized lab and field tests based on state project test data. The results of the overall project are detailed herein. The final suite of tests is detailed in the accompanying testing guide.
Resumo:
The Federal Highway Administration published the final rule updating 23 CFR 630 Subpart J in September 2004. The revised rule requires agencies using federal funding to address both safety and mobility in planning and construction of roadway improvements. The Iowa Department of Transportation (Iowa DOT) requested the assistance of the Center for Transportation and Research in developing guidance for a policy and procedures to comply with the final rule. This report describes an in-depth examination of current Iowa DOT project development processes for all types of improvements, including maintenance, as well as a detailed characterization of work zone impact considerations throughout project completion. To comply with both the letter and perceived intent of the final rule on safety and mobility, the report features a suggested work zone policy statement and suggested revisions in the Iowa DOT project development processes, including a definition of the key element: significant projects.
Resumo:
Williamson Pond is a 26-acre publicly owned lake located about 2 miles east of the town of Williamson, in Lucas County. It has a watershed area of 1,499 acres. It has been managed since 1976 by the Lucas County Conservation Board (while still under state ownership) for fishing, boating, hunting, picnicking and other passive uses. Designated uses are Class AI, primary contact, and Class B (LW) aquatic life. Williamson Pond is on the 2004 EPA 303(d) List of Impaired Waters. A Total Maximum Daily Load (TMDL) for turbidity and nutrients at Williamson Pond was prepared by IDNR in 2005 and approved by EPA in 2006. The TMDL set reduction targets for both suspended sediment and phosphorus. The Williamson Pond Watershed Management Plan has provided the local work group and partners with information to develop and implement strategies to improve and protect water quality. These strategies are based on a three phase approach that will ultimately lead the removal of Williamson Pond from the Impaired Waters List. The goals identified in this proposal (Phase I) will reduce sediment and phosphorus delivery by 453 tons and 589 pounds annually. The Lucas County SWCD has and will continue to provide leadership on the Williamson Pond Project and has secured the partnerships necessary to address water quality problems and hired a part-time project coordinator to manage, implement, and oversee all activities pertaining to this proposal.
Resumo:
Lake Icaria is a 660 acre man-made lake in rural Adams County. Lake Icaria is a popular recreational attraction providing ample fishing, boating, and swimming opportunities. Constructed in 1977 for water supply, Lake lcaria continues to provide reliable drinking water to 1,900 households in Adams and Montgomery counties. No stranger to the water quality world, Lake Icaria was the primary lake in the 3Lakes Water Quality Project(1996-2004), an eight year water quality effort which came to be known as one oflowa's first great water quality successes. At time of construction the Lake Icaria watershed was primarily grass. A shift towards maximizing crop production in the 1980's brought about the end of dairy farms and a concern for sediment loss and how that would affect water quality. This change in land use set the stage for the first water quality project at Lake Icaria. Since the conclusion of the 3Lakes Water Quality Project in 2004land use in the watershed has made yet another monumental shift towards crop production. Nearly 2,000 acres ofland that was once in the conservation reserve program is now being planted to a crop. This change in land use has once again brought about serious concerns for the quality of water being provided by Lake Icaria.
Resumo:
Silver Creek is a warm water stream resource located in one of the most intensely cropped portions of Clayton County. The stream has been included on Iowa’s 303(d) list of impaired waters since 2002. Aquatic life, which should be present in Silver Creek, isn’t there. According to the Draft Total Maximum Daily Load (TMDL) for Silver Creek, the primary nonpoint pollution sources are soil erosion from agricultural land uses and direct deposition of ammonia by livestock with access to the stream. The Clayton Soil & Water Conservation District has begun efforts to remove Silver Creek from the impaired waters list. The District has promoted stream corridor and sinkhole protection, and the installation of buffer practices along Silver Creek and its tributaries. Conservation practices have been targeted to crop fields to reduce sediment delivery to the stream. A series of news articles, newsletters, and field days have been utilized to increase public understanding of water quality issues. Landowner interest has outweighed available cost share resources. Additional financial support will allow the project to build upon its early successes, to further address the identified impairments, and to respond to a long list of landowners that are interested in conservation work on their farms.
Resumo:
Little River Lake watershed is a 13,305 acre subwatershed of Little River. The 788 acre lake was listed as a 303d impaired water body in 2008 due to elevated turbidity and algae levels. The Decatur SWCD has prioritized water quality protection efforts within the Little River Lake watershed because 1) portions of this watershed has been identified as the primary contributor of sediment and nutrients to Little River Lake, which provides an essential source of drinking water for Decatur County and the Southern Iowa Rural Water Association; 2) the watershed provides exemplary education and project interpretation opportunities due to its proximity to Little River Lake Recreation Area, and 3) by using targeted and proven soil conservation practices to address water quality deficiencies the probability of successfully attenuating soil erosion and ameliorating water quality impairments is enhanced. The specific goals of this proposal are to: 1. reduce annual sediment, and phosphorous delivery to the lake by 11,280 tons and 14,664 lbs., respectively, via applications of conservation practices on targeted agricultural land; 2. delist the lake as an EPA 303d impaired water body via water quality enhancement; 3. obtain a “Full Support” status for the lake’s aquatic life and recreational use; 4. reduce potable water treatment costs (minimum 50% cost reduction) associated with high suspended solid levels; and 5. restore a viable sport-fish population, thereby bolstering tourism and the economy. To achieve timely project implementation the Decatur SWCD has cooperated with the IDNR Watershed Improvement Section, Fisheries Bureau, and IDALS-DSC to assess extant water quality and watershed conditions, coalesced a diverse team of committed partners and secured matching funding from multiple sources.
Resumo:
The Tuttle Lake Watershed is approximately 125,000 acres and Tuttle Lake itself is 2,270 acres; 5,609 acres of the watershed lies in Iowa territory within Emmet County. It is a sub-watershed of the larger East Fork Des Moines River Watershed, also referred to as Hydrologic Unit Code 07100003. For the purpose of this document, grant money is only being applied for the project implementation in the Iowa portion of the Tuttle Lake Watershed. Tuttle Lake was placed on the 2002 EPA 303(d) Impaired Waters List due to a “very large population of suspended algae and very high levels of inorganic turbidity.” In 2004, the Iowa Department of Natural Resources (IDNR) completed a Total Maximum Daily Load (TMDL) study on Tuttle Lake and found excess sediment and phosphorus levels being the primary pollutants causing the algae and turbidity impairment. Although two point sources were located in Minnesota, IDNR determined that the influx of nutrients is likely from agricultural runoff and re-suspension of lake sediment. The condition of Tuttle Lake is such that the reduction of sediment, nutrients [phosphorus and nitrogen] and pathogens is the primary objective. To achieve that objective, wetlands will be constructed in this first phase to reduce the delivery of nitrogen, phosphorus, and sediment to Tuttle Lake.
Resumo:
Silver Lake is located in an 18,053-acre watershed. The watershed is intensively farmed with almost all of the wetlands being previously drained or degraded over the last 50 years. Silver Lake is listed on the State of Iowa’s impaired water bodies list due to sediment and high nutrient level. Silver Lake is also known be in the bottom 25 percentile of Iowa’s lakes due Secchi disk readings and Chlorophyll a level. Farming in the watershed is the principle concern and cause for many of the problems occurring in Silver Lake currently with 78% of the watershed being intensively farmed. There are two major drainage ditches that have been used to drain the major wetlands and sloughs that, at one time, filtered the water and slowed it down before it reached Silver Lake. With these two major drainage ditches, water is able to reach the lake much faster and unfiltered than it once did historically. The loss of 255 restorable wetland basins to row crop production has caused serious problems in Silver Lake. These wetland basins once slowed and filtered water as it moved through the watershed. With their loss over the last 50 years that traditional drainage no longer occurs. We propose to create a Wetland Reserve Program incentive project to make WRP a more attractive option to landowners within the watershed. The incentive will be based on the amount of sediment delivery reduction to the lake, therefore paying a greater payment for a greater benefit to the lake. The expected result of this project is the restoration of over 250 acres of wetland basins with an associated 650 acres of upland buffers. The benefit for these wetlands and buffers would be reduced sediment, reduced nutrients, and slowed waters to the lake.
Resumo:
Miller Creek is on the 2006 Section 303d Impaired Waters List and has a 19,926 acre watershed. All indicators, as reported in the Miller Creek assessment, show that the impairment is due to sediment and nutrient delivery from upland runoff which contributes to elevated water temperatures, excessive algae, and low dissolved oxygen levels within the stream. In an effort to control these problems, the Miller Creek Water Quality Project will target areas of 5 tons per acre or greater soil loss or with 0.5 tons per acre or greater sediment delivery rates. The assessment revealed these targeted priority lands make up 32% or 6,395 acres of the Miller Creek watershed. Priority lands include cropland, pasture land, timber, and sensitive riparian areas. It is the goal of this project to reduce sediment delivery by 70% on 60% or 3,837 acres of these priority lands. This will be accomplished through installation of strategically placed structural practices, rotational grazing systems, and buffer strips. These practices will reduce soil loss, reduce sediment delivery, improve water quality, and improve wildlife habitat in the watershed. Utilizing partnerships with NRCS and IDALS-DSC will be important in making this project successful. In addition to using matching funds from EQIP, WHIP, and CRP, the Monroe SWCD is committed to prioritizing local cost share funds through IFIP and REAP for use in the Miller Creek Watershed.
Resumo:
Initiated in 2001, the West Tarkio Creek Watershed Project has a proven track record of implementing an enormous amount of structural conservation practices. To date, over $925,000 has been spent to build 69 miles of terraces on 63 cooperators' land. The success of the Project was due in large part to the conservation ethic of the landowners to improve their farms, preserve the productivity of the land, and protect West Tarkio Creek. This has been made possible through funding from DSC Watershed Protection Funds (WSPF) which has provided $1,362,592 in cost share funds since 2001 but is has been severely limited in recent years due to shortages within the State’s budget. The original project goals called for the construction of 750,000 feet (142 miles) of terraces to effectively treat the watershed. In order to meet these goals and bring the project to a successful endpoint, another 153,000 feet (29 miles) remain to be constructed by the landowners with the help of the SWCD staff. Severe rain events in recent years have caused an enormous amount of damage throughout the region, these storms were helpful in identifying where watershed work remains to be completed. Scars on the landscape in the aftermath of the storms clearly etched out the specific location where additional practices are needed in addition to those proposed in the original project work plan. Project supporters are confident that the WIRB Program can unlock this potential and pave the way for what can become known as one of the most effective land treatment projects in Iowa.
Resumo:
In 2004, Walnut Creek was placed on the 303d list of Impaired Waters due to a low biotic index (lack of aquatic life) during IDNR stream sampling events. Sediment originating from agriculture, streambank erosion, and channelization were listed as the most likely sources impacting aquatic life. In an effort to address these concerns, a preliminary study was completed of the multi-county watershed to identify priority areas. A Watershed Development & Planning Assistance Grant was then funded by the IDALS-DSC to conduct a detailed assessment of these prioritized sub-watersheds. The impending assessment of the watershed and the stream corridor revealed ample opportunities to address gully, sheet and rill erosion while addressing in-stream water velocity issues that plagued the riparian corridor. A comprehensive plan was developed comprised of a variety of best management practices to address the identified concerns. In 2009, this plan was submitted to the WIRB Board by the East Pottawattamie and Montgomery SWCDs and $489,455 was awarded to address concerns identified during watershed assessment inquiries. Despite adverse weather conditions, which has hampered conservation construction recently, this project has held fast to pre-project goals due to the fortitude of the project sponsors and the overwhelming participation by the watershed landowners. Unfortunately, state budget shortfalls are bringing project progress to a halt. As specified in the original WIRB funding request, practice funding for Year 3 was to come from the Division of Soil Conservation’s Watershed Protection Fund (WSPF). Due to Iowa’s budgetary restraints, the Walnut Creek WSPF application, which was submitted this spring, was not funded since no new applications in the state were funded. If funded again, this grant will serve as the critical step in continuing what is destined to be a true watershed success story.
Resumo:
The Rathbun Land and Water Alliance and partners have undertaken a highly effective approach to water quality protection through the Rathbun Lake Special Project. This approach is achieving a significant reduction in the sediment and phosphorus that impair water quality in Rathbun Lake and its tributaries as a result of the targeted application of best management practices (BMPs) for priority land in the watershed. This application proposes to assist landowners to construct five large sediment retention basins that will reduce sediment and phosphorus delivery from priority land in targeted sub-watersheds. The Alliance, with previous WIRB support, demonstrated that construction of these basins at strategically selected sites is one of the most cost effective measures to reduce sediment and phosphorus delivery to Rathbun Lake. Features of this project are: (1) use of geographic information system (GIS) analysis to identify potential basin sites; (2) assistance for landowners to construct 5 basins that will reduce the annual delivery of sediment by 1,500 tons and phosphorus by 5,000 pounds; (3) evaluation of the benefits from basin construction using GIS analysis and water quality monitoring; and (4) watershed outreach activities that encourage landowners to apply BMPs including sediment retention basins to protect water quality.
Resumo:
The Central Park Lake Watershed Assessment and Management Plan identified four categories where improvements are needed to remove the 23 acre lake from the impaired waters list. These include the wastewater system, runoff from surrounding lands, in-lake nutrient re-suspension and runoff from hard surfaces within the park. The lake is currently impaired for bacteria, algae and pH. Through outcomes of the Watershed Assessment and Management Plan, this proposal includes for abandonment and reclamation of the single cell wastewater lagoon site, replacement with three conventional septic systems and construction of two wetlands. One of the wetlands is located on the same site as the reclaimed lagoon and the other is located to intercept sediment and trap nutrients transported by tile lines. The prescribed wastewater system improvements are based on assessment by grab samples test by the State Hygienic Lab, development of a Preliminary Engineering Report, soil analysis and communication with IDNR wastewater officials. The two wetland sites were assessed by officials from IDALS and the Jones County SWCD. This project is part of $1.7 million lake restoration effort to reclaim the 47 year old lake. The lake has a positive economic impact of more than $7.6 million annually and supports an average annual visitation of 58,145, according to the Iowa Lakes Valuation Project, conducted by Iowa State University.
Resumo:
Part of a phased approach, an intensive information and education program, construction of erosion control practices, and sediment control on construction sites is proposed. These proposed practices will manage sediment runoff and nutrient runoff on agricultural and urban areas. Sediment control “structures” such as waterways, wetlands, modified terraces, grade stabilization structures, sediment basins, and rain gardens is proposed and will be combined with nutrient and pesticide management and reduced tillage to reduce non-point source pollution. A reduction of 15% of the sediment and phosphorus delivered to a water body from priority areas will be looked at as a success in this short-term project focused primarily at education within the project area which is also, for the most part, the top 25% sediment load producing sub-watersheds. In addition, four urban areas have been identified as part of this project as needing immediate assistance. A combination of urban and agricultural conservation practices, shoreline revegetation, and education of landowners will be used to achieve these results on both the urban and the agricultural arena.
Resumo:
The main channel of Upper Buffalo Creek has been identified on Iowa's 303(d) List of Impaired Waters as having a biological impairment (i.e., greater than 50% decrease in mussel species) due to habitat modification, stream alteration, nutrients, and/or siltation. The Buchanan County SWCD has identified this as a priority watershed because mussel population decreases have been well documented to be directly associated with decreases in ecological value, recreational value, and overall water quality. The presence of a diverse and reproducing mussel population indicates that a healthy aquatic ecosystem is intact, which means good fishing, good water quality for wildlife, and assurance that water is safe for recreation. Dan Cohen, Buchanan Conservation Board Director, stated that "should water quality conditions improve, and fishing holes and habitat be enhanced, there is no doubt that many people would take advantage of the renewed recreational opportunities". This watershed contains two "threatened" species of mussels and five "sensitive" species of fish. The District feels that a watershed project will assist in implementing conservation practices that will greatly improve water quality and enhance biological and recreational venues.