117 resultados para Rural Planning
Resumo:
In creating a strategic plan, an organization analyzes current and historical trends and other factors to try and anticipate the future. The state of Iowa’s strategic planning process asks agencies to look three to five years into the future to lay out essential goals, strategies, and measures to ensure that it remains focused on achieving its vision and mission. Agency plans should address strategic challenges or opportunities related to their mission, programs and services. To the extent possible, agencies should align their plans with the enterprise plan, considering how they can contribute to achieving the Governor’s Goals. Agencies are required to review their plan on an annual basis, and, if appropriate, refine the plan.
Resumo:
Iowa has been a HRSA State Planning Grant participant since October 2000. Iowa’s purpose in participating in the program has remained constant: to identify, through research, policies that will help expand access to affordable health insurance coverage for all Iowans. The Iowa State Planning Grant project (Iowa-SPG) has been able to serve as a significant state data resource on the uninsured in Iowa throughout its tenure. Through the use of State Planning Grant resources, policymakers, the media, and interested citizens have been able to access, from one convenient and trusted source, a variety of information on Iowa’s uninsured population. Section 1 of this report presents an update of state-level data on the uninsured with a focus on the data that has been of greatest interest to various Iowa constituencies during the State Planning Grant years, 2001-2005.
Resumo:
Capacity is affected by construction type and its intensity on adjacent open traffic lanes. The effect on capacity is a function of vehicles moving in and out of the closed lanes of the work zone, and the presence of heavy construction vehicles. Construction activity and its intensity, however, are not commonly considered in estimating capacity of a highway lane. The main purpose of this project was to attempt to quantify the effects of construction type and intensity (e.g. maintenance, rehabilitation, reconstruction, and milling) on work zone capacity. The objective of this project is to quantify the effects of construction type and its intensity on work zone capacity and to develop guidelines for MoDOT to estimate the specific operation type and intensity that will improve the traffic flow by reducing the traffic flow and queue length commonly associated with work zones. Despite the effort put into field data collection, the data collected did not show a full speed-flow chart therefore extracting a reliable capacity value was difficult. A statistical comparison between the capacity values found in this study using either methodologies indicates that there is an effect of construction activity on the values work zone capacity. It was found that the heavy construction activity reduces the capacity. It is very beneficial to conduct similar studies on the capacity of work zone with different lane closure barriers, which is also directly related to the type of work zone being short-term or long-term work zones. Also, the effect of different geometric and environmental characteristics of the roadway should be considered in future studies.
Resumo:
Audit report on the Water and Waste Disposal Systems for Rural Communities program for the City of Lone Rock, Iowa for the year ended June 30, 2014
Resumo:
Water planning efforts typically identify problems and needs. But simply calling attention to issues is usually not enough to spur action; the end result of many well-intentioned planning efforts is a report that ends up gathering dust on a shelf. Vague recommendations like “Water conservation measures should be implemented” usually accomplish little by themselves as they don’t assign responsibility to anyone. Success is more likely when an implementation strategy — who can and should do what — is developed as part of the planning process. The more detailed and specific the implementation strategy, the greater the chance that something will actually be done. The question then becomes who has the legal authority or responsibility to do what? Are new laws and programs needed or can existing ones be used to implement the recommendations? ... This document is divided into four main parts. The first, “Carrots and Sticks” looks at two basic approaches — regulatory and non-regulatory — that can be, and are, used to carry out water policy. Both have advantages and disadvantages that need to be considered. The second, “The powers of federal, state and local governments…,” looks at the constitutional powers the federal government and state and local governments have to carry out water policy. An initial look at the U. S. Constitution might suggest the federal government’s regulatory authority over water is limited but, in fact, its powers are very substantial. States have considerable authority to do a number of things but have to be mindful of any federal efforts that might conflict with those state efforts. And local governments can only do those things the state constitution or state legislature says they can do and must conform to any requirements or limitations on those powers that are contained in the enabling acts. Parts three and four examine in more detail the main programs and agencies at the federal level as well as Iowa’s state and local levels and the roles they play in national and state water policy.
Resumo:
This brief discusses several important factors that should be considered when comparing health insurance plans in the health insurance marketplaces across geographic areas.
Resumo:
Information about roadway departures, rural intersections, and rural speed management countermeasures relevant to Iowa was summarized on webpages (www.ctre.iastate.edu/research-synthesis/) to allow agencies to more effectively target specific types of crashes in Iowa. More information about each of the countermeasures described in this tech transfer summary, as well as speed impacts, reported crash modification factors, costs, usage within Iowa, and Iowa-specific guidance, is available on the Synthesis of Safety-Related Research web pages at www.ctre.iastate.edu/research-synthesis/. The project provides Iowa agencies with a resource (both web pages and relevant publications) to address rural safety. The team is coordinating with the Iowa Local Technical Assistance Program (LTAP), the Iowa Highway Research Board, the Iowa Association of Counties, and other groups to explore additional ways to distribute the information to local and county agencies.
Resumo:
Single-vehicle run-off-road crashes are the most common crash type on rural two-lane Iowa roads. Rumble strips have been proven effective in mitigating these crashes, but these strips are commonly installed in paved shoulders adjacent to higher-volume roads owned by the State of Iowa. Lower-volume paved rural roads owned by local agencies do not commonly feature paved shoulders but frequently experience run-off-road crashes. This project involved installing “rumble stripes,” which are a combination of conventional rumble strips with a painted edge line placed on the surface of the milled area, along the edge of the travel lanes but at a narrow width to avoid possible intrusion into the normal vehicle travel paths. Candidate locations were selected from a list of paved local rural roads that were most recently listed in the top 5% of roads for run-off-road crashes in Iowa. Horizontal curves were the most favored locations for rumble stripe installation because they commonly experience roadway departure crashes. The research described in this report was part of a project funded by the Federal Highway Administration, Iowa Highway Research Board, and Iowa Department of Transportation to evaluate the effectiveness of edge line rumble strips in Iowa. The project evaluated the effectiveness of “rumble stripes” in reducing run-off-road crashes and in improving the longevity and wet weather visibility of edge line markings. This project consists of two phases. The first phase was to select pilot study locations, select a set of test sites, install rumble stripes, summarize lessons learned during installation, and provide a preliminary assessment of the rumble stripes’ performance. This information is summarized in this report. The purpose of the second phase is to provide a more long-term assessment of the performance of the pavement markings, conduct preliminary crash assessments, and evaluate lane keeping. This will result in a forthcoming second report.
Resumo:
Audit report on the Xenia Rural Water District for the year ended December 31, 2014
Resumo:
In the administration, planning, design, and maintenance of road systems, transportation professionals often need to choose between alternatives, justify decisions, evaluate tradeoffs, determine how much to spend, set priorities, assess how well the network meets traveler needs, and communicate the basis for their actions to others. A variety of technical guidelines, tools, and methods have been developed to help with these activities. Such work aids include design criteria guidelines, design exception analysis methods, needs studies, revenue allocation schemes, regional planning guides, designation of minimum standards, sufficiency ratings, management systems, point based systems to determine eligibility for paving, functional classification, and bridge ratings. While such tools play valuable roles, they also manifest a number of deficiencies and are poorly integrated. Design guides tell what solutions MAY be used, they aren't oriented towards helping find which one SHOULD be used. Design exception methods help justify deviation from design guide requirements but omit consideration of important factors. Resource distribution is too often based on dividing up what's available rather than helping determine how much should be spent. Point systems serve well as procedural tools but are employed primarily to justify decisions that have already been made. In addition, the tools aren't very scalable: a system level method of analysis seldom works at the project level and vice versa. In conjunction with the issues cited above, the operation and financing of the road and highway system is often the subject of criticisms that raise fundamental questions: What is the best way to determine how much money should be spent on a city or a county's road network? Is the size and quality of the rural road system appropriate? Is too much or too little money spent on road work? What parts of the system should be upgraded and in what sequence? Do truckers receive a hidden subsidy from other motorists? Do transportation professions evaluate road situations from too narrow of a perspective? In considering the issues and questions the author concluded that it would be of value if one could identify and develop a new method that would overcome the shortcomings of existing methods, be scalable, be capable of being understood by the general public, and utilize a broad viewpoint. After trying out a number of concepts, it appeared that a good approach would be to view the road network as a sub-component of a much larger system that also includes vehicles, people, goods-in-transit, and all the ancillary items needed to make the system function. Highway investment decisions could then be made on the basis of how they affect the total cost of operating the total system. A concept, named the "Total Cost of Transportation" method, was then developed and tested. The concept rests on four key principles: 1) that roads are but one sub-system of a much larger 'Road Based Transportation System', 2) that the size and activity level of the overall system are determined by market forces, 3) that the sum of everything expended, consumed, given up, or permanently reserved in building the system and generating the activity that results from the market forces represents the total cost of transportation, and 4) that the economic purpose of making road improvements is to minimize that total cost. To test the practical value of the theory, a special database and spreadsheet model of Iowa's county road network was developed. This involved creating a physical model to represent the size, characteristics, activity levels, and the rates at which the activities take place, developing a companion economic cost model, then using the two in tandem to explore a variety of issues. Ultimately, the theory and model proved capable of being used in full system, partial system, single segment, project, and general design guide levels of analysis. The method appeared to be capable of remedying many of the existing work method defects and to answer society's transportation questions from a new perspective.
Resumo:
As streets age, officials must deal with rehabilitating and reconstructing these pavements to maintain a safe and comfortable ride. In light of nationwide budget shortfalls, cost-effective methods of extending pavement service life must be developed or the overall condition of street systems will continue to fall. Thin maintenance surfaces (TMSs) are a set of cost-effective preventive maintenance surfacing techniques that can be used to extend the life of bituminous pavement—pavement built with hot mix asphalt, hot mix asphalt overlays of portland cement concrete pavements, built-up seal coat (chip seal), stabilized materials, or a combination of these. While previous phases of TMS research have provided information about the uses of thin maintenance surfaces in rural settings, urban areas have different road maintenance challenges that should be considered separately. This research provides city street officials with suggestions for TMS techniques that street departments can easily test and include into their current programs. This research project facilitated the construction of TMS test sections in Cedar Rapids, Council Bluffs, and West Des Moines (all urban settings in Iowa). Test section sites and surfaces were selected to suit the needs of municipalities and were applied to roads with an array of various distresses and maintenance needs. Condition surveys of each test section were performed before construction, after construction, and after the first winter to record the amount and severity of existing distress and calculate the pavement condition index. Because conditions of the test sections varied greatly, determining which surface was most successful by comparing case studies was not feasible. However, some general conclusions can be made from this research. TMSs are suitable preventive maintenance techniques for a municipal street department’s program for preserving existing pavements. Careful attention should be paid to proper planning, quality control during construction, aggregate and binder selection, and aggregate embedment in order to support successful TMS application.
Resumo:
It is commonly regarded that the overuse of traffic control devices desensitizes drivers and leads to disrespect, especially for low-volume secondary roads with limited enforcement. The maintenance of traffic signs is also a tort liability concern, exacerbated by unnecessary signs. The Federal Highway Administration’s (FHWA) Manual on Uniform Traffic Control Devices (MUTCD) and the Institute of Transportation Engineer’s (ITE) Traffic Control Devices Handbook provide guidance for the implementation of STOP signs based on expected compliance with right-of-way rules, provision of through traffic flow, context (proximity to other controlled intersections), speed, sight distance, and crash history. The approach(es) to stop is left to engineering judgment and is usually dependent on traffic volume or functional class/continuity of system. Although presently being considered by the National Committee on Traffic Control Devices, traffic volume itself is not given as a criterion for implementation in the MUTCD. STOP signs have been installed at many locations for various reasons which no longer (or perhaps never) met engineering needs. If in fact the presence of STOP signs does not increase safety, removal should be considered. To date, however, no guidance exists for the removal of STOP signs at two-way stop-controlled intersections. The scope of this research is ultra-low-volume (< 150 daily entering vehicles) unpaved intersections in rural agricultural areas of Iowa, where each of the 99 counties may have as many as 300 or more STOP sign pairs. Overall safety performance is examined as a function of a county excessive use factor, developed specifically for this study and based on various volume ranges and terrain as a proxy for sight distance. Four conclusions are supported: (1) there is no statistical difference in the safety performance of ultra-low-volume stop-controlled and uncontrolled intersections for all drivers or for younger and older drivers (although interestingly, older drivers are underrepresented at both types of intersections); (2) compliance with stop control (as indicated by crash performance) does not appear to be affected by the use or excessive use of STOP signs, even when adjusted for volume and a sight distance proxy; (3) crash performance does not appear to be improved by the liberal use of stop control; (4) safety performance of uncontrolled intersections appears to decline relative to stop-controlled intersections above about 150 daily entering vehicles. Subject to adequate sight distance, traffic professionals may wish to consider removal of control below this threshold. The report concludes with a section on methods and legal considerations for safe removal of stop control.
Resumo:
Citizens request the installation of roadway lighting in their communities based on several motivations, including the experience or perception that lighting improves traffic safety and reduces crime, while also providing a tangible benefit of taxpayer dollars at work. Roadway authority staff fully appreciate these citizen concerns; however, roadway lighting is expensive to install, supply energy to, and maintain in perpetuity. The installation of roadway lighting is only one of a number of strategies agencies have to address nighttime crash concerns. This research assists local agencies in deciding when, where, and how much rural intersection lighting to provide.