185 resultados para Road construction workers Safety measures


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Iowa, hundreds of people die and thousands more are injured on our public roadways each year despite decades of efforts to end this su�ffering. Past safety e�efforts have resulted in Iowans bene�fiting from one of the best state roadway systems in the nation. Due to multi-agency e�efforts, Iowa has achieved 90 percent compliance with the state’s mandatory front seat belt use law, earned the nation’s second-lowest percent of alcohol involvement in fatal crashes and made safety gains in system-wide roadway design and operational improvements. Despite these ongoing e�efforts, the state’s annual average of 445 deaths and thousands of life-changing injuries is a tragic toll and an unacceptable public health epidemic in our state. To save more lives on our roadways, Iowans must be challenged to think �differently about lifesaving measures addressing young drivers, safety belts, and motorcycle helmet use and accept innovative designs such as roundabouts. Iowa must apply evidence-based strategies and create a safety culture that motivates all citizens to travel more responsibly. They must demand a lower level of tolerance for Iowa’s roadway deaths and injuries. The Iowa Comprehensive Highway Safety Plan (CHSP) engages diverse safety stakeholders and charts the course for this state, bringing to bear sound science and the power of shared community values to change the culture and achieve a standard of safer travel for our citizens. How many roadway deaths and injuries are too many? Iowa’s highway safety stakeholders believe that, “One death is one too many” and e�effective culture-changing policy and program strategies must be implemented to help reduce this death toll from an annual average of 445 to 400 by the year 2015.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The historically-reactive approach to identifying safety problems and mitigating them involves selecting black spots or hot spots by ranking locations based on crash frequency and severity. The approach focuses mainly on the corridor level without taking the exposure rate (vehicle miles traveled) and socio-demographics information of the study area, which are very important in the transportation planning process, into consideration. A larger study analysis unit at the Transportation Analysis Zone (TAZ) level or the network planning level should be used to address the needs of development of the community in the future and incorporate safety into the long-range transportation planning process. In this study, existing planning tools (such as the PLANSAFE models presented in NCHRP Report 546) were evaluated for forecasting safety in small and medium-sized communities, particularly as related to changes in socio-demographics characteristics, traffic demand, road network, and countermeasures. The research also evaluated the applicability of the Empirical Bayes (EB) method to network-level analysis. In addition, application of the United States Road Assessment Program (usRAP) protocols at the local urban road network level was investigated. This research evaluated the applicability of these three methods for the City of Ames, Iowa. The outcome of this research is a systematic process and framework for considering road safety issues explicitly in the small and medium-sized community transportation planning process and for quantifying the safety impacts of new developments and policy programs. More specifically, quantitative safety may be incorporated into the planning process, through effective visualization and increased awareness of safety issues (usRAP), the identification of high-risk locations with potential for improvement, (usRAP maps and EB), countermeasures for high-risk locations (EB before and after study and PLANSAFE), and socio-economic and demographic induced changes at the planning-level (PLANSAFE).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the challenges that faces the winter maintainer is how much chemical to apply to the road under given conditions. Insufficient chemical can lead to the road surface becoming slick, and the road thus becoming unsafe. In all likelihood, additional applications will have to be made, requiring additional effort and use of resources. However, too much chemical can also be bad. While an excess of chemical will ensure (in most circumstances) that a safe road condition is achieved, it may also result in a substantial waste of chemical (with associated costs for this waste) and in ancillary damage to the road itself and to the surrounding environment. Ideally, one should apply what might be termed the “goldilocks” amount of chemical to the road: Not too much, and not too little, but just right. Of course the reality of winter maintenance makes achieving the “goldilocks” application rate somewhat of a fairy tale. In the midst of a severe storm, when conditions are poor and getting worse, the last thing on a plow operator’s mind is a minute adjustment in the amount of chemical being applied to the road. However, there may be considerable benefit and substantial savings to be achieved if chemical applications can be optimized to some degree, so that wastage is minimized without compromising safety. The goal of this study was to begin to develop such information through a series of laboratory studies in which the force needed to scrape ice from concrete blocks was measured, under a variety of chemical application conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This manual summarizes the roadside tree and brush control methods used by all of Iowa's 99 counties. It is based on interviews conducted in Spring 2002 with county engineers, roadside managers and others. The target audience of this manual is the novice county engineer or roadside manager. Iowa law is nearly silent on roadside tree and brush control, so individual counties have been left to decide on the level of control they want to achieve and maintain. Different solutions have been developed but the goal of every county remains the same: to provide safe roads for the traveling public. Counties in eastern and southern Iowa appear to face the greatest brush control challenge. Most control efforts can be divided into two categories: mechanical and chemical. Mechanical control includes cutting tools and supporting equipment. A chain saw is the most widely used cutting tool. Tractor mounted boom mowers and brush cutters are used to prune miles of brush but have significant safety and aesthetic limitations and boom mowers are easily broken by inexperienced operators. The advent of tree shears and hydraulic thumbs offer unprecedented versatility. Bulldozers are often considered a method of last resort since they reduce large areas to bare ground. Any chipper that violently grabs brush should not be used. Chemical control is the application of herbicide to different parts of a plant: foliar spray is applied to leaves; basal bark spray is applied to the tree trunk; a cut stump treatment is applied to the cambium ring of a cut surface. There is reluctance by many to apply herbicide into the air due to drift concerns. One-third of Iowa counties do not use foliar spray. By contrast, several accepted control methods are directed toward the ground. Freshly cut stumps should be treated to prevent resprouting. Basal bark spray is highly effective in sensitive areas such as near houses. Interest in chemical control is slowly increasing as herbicides and application methods are refined. Fall burning, a third, distinctly separate technique is underused as a brush control method and can be effective if timed correctly. In all, control methods tend to reflect agricultural patterns in a county. The use of chain saws and foliar sprays tends to increase in counties where row crops predominate, and boom mowing tends to increase in counties where grassland predominates. For counties with light to moderate roadside brush, rotational maintenance is the key to effective control. The most comprehensive approach to control is to implement an integrated roadside vegetation management (IRVM) program. An IRVM program is usually directed by a Roadside Manager whose duties may be shared with another position. Funding for control programs comes from the Rural Services Basic portion of a county's budget. The average annual county brush control budget is about $76,000. That figure is thought not to include shared expenses such as fuel and buildings. Start up costs for an IRVM program are less if an existing control program is converted. In addition, IRVM budgets from three different northeastern Iowa counties are offered for comparison in this manual. The manual also includes a chapter on temporary traffic control in rural work zones, a summary of the Iowa Code as it relates to brush control, and rules on avoiding seasonal disturbance of the endangered Indiana bat. Appendices summarize survey and forest cover data, an equipment inventory, sample forms for record keeping, a sample brush control policy, a few legal opinions, a literature search, and a glossary.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous research on pavement markings from a safety perspective tackled various issues such as pavement marking retroreflectivity variability, relationship between pavement marking retroreflectivity and driver visibility, or pavement marking improvements and safety. A recent research interest in this area has been to find a correlation between retroreflectivity and crashes, but a significant statistical relationship has not yet been found. This study investigates such a possible statistical relationship by analyzing five years of pavement marking retroreflectivity data collected by the Iowa Department of Transportation (DOT) on all state primary roads and corresponding crash and traffic data. This study developed a spatial-temporal database using measured retroreflectivity data to account for the deterioration of pavement markings over time along with statewide crash data to attempt to quantify a relationship between crash occurrence probability and pavement marking retroreflectivity. First, logistic regression analyses were done for the whole data set to find a statistical relationship between crash occurrence probability and identified variables, which are road type, line type, retroreflectivity, and traffic (vehicle miles traveled). The analysis looked into subsets of the data set such as road type, retroreflectivity measurement source, high crash routes, retroreflectivity range, and line types. Retroreflectivity was found to have a significant effect in crash occurrence probability for four data subsets—interstate, white edge line, yellow edge line, and yellow center line data. For white edge line and yellow center line data, crash occurrence probability was found to increase by decreasing values of retroreflectivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today, many of Iowa’s counties are experiencing an increase in rural development. Two specific types of development were focused on for this research: rural residential subdivisions and livestock production operations. Rural residential developments are primarily year round single-family homes, though some are vacation homes. Livestock production in Iowa includes hog, beef, and poultry facilities. These two types of rural development, while obviously very different in nature and incompatible with each other, share one important characteristic: They each generate substantial amounts of new traffic for Iowa’s extensive secondary road system. This research brings together economic, spatial, and legal analysis methods to address the impacts of rural development on the secondary road system and provide county engineers, county supervisors, and state legislators with guidance in addressing the challenges associated with this development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Construction zones pose a significant threat to both workers and drivers causing numerous injuries and deaths each year. Innovations in work zone safety could reduce these numbers. However, implementing work zone interventions before they are validated can undermine rather than enhance safety. The objective of this research is to demonstrate how driving simulators can be used to evaluate the effect of various work zone interventions on driver performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transportation system is in demand 24/7 and 365 days a year irrespective of neither the weather nor the conditions. Iowa’s transportation system is an integral and essential part of society serving commerce and daily functions of all Iowans across the state. A high quality transportation system serves as the artery for economic activity and, the condition of the infrastructure is a key element for our future growth opportunities. A key component of Iowa’s transportation system is the public roadway system owned and maintained by the state, cities and counties. In order to regularly re-evaluate the conditions of Iowa’s public roadway infrastructure and assess the ability of existing revenues to meet the needs of the system, the Iowa Department of Transportation’s 2006 Road Use Tax Fund (RUTF) report to the legislature included a recommendation that a study be conducted every five years. That recommendation was included in legislation adopted in 2007 and signed into law. The law specifically requires the following (2011 Iowa Code Section 307.31): •“The department shall periodically review the current revenue levels of the road use tax fund and the sufficiency of those revenues for the projected construction and maintenance needs of city, county, and state governments in the future. The department shall submit a written report to the general assembly regarding its findings by December 31 every five years, beginning in 2011. The report may include recommendations concerning funding levels needed to support the future mobility and accessibility for users of Iowa's public road system.” •“The department shall evaluate alternative funding sources for road maintenance and construction and report to the general assembly at least every five years on the advantages and disadvantages and the viability of alternative funding mechanisms.” Consistent with this requirement, the Iowa Department of Transportation (DOT) has prepared this study. Recognizing the importance of actively engaging with the public and transportation stakeholders in any discussion of public roadway conditions and needs, Governor Terry E. Branstad announced on March 8, 2011, the creation of, and appointments to, the Governor’s Transportation 2020 Citizen Advisory Commission (CAC). The CAC was tasked with assisting the Iowa DOT as they assess the condition of Iowa’s roadway system and evaluate current and future funding available to best address system needs. In particular the CAC was directed to gather input from the public and stakeholders regarding the condition of Iowa’s public roadway system, the impact of that system, whether additional funding is needed to maintain/improve the system, and, if so, what funding mechanisms ought to be considered. With this input, the CAC prepared a report and recommendations that were presented to Governor Branstad and the Iowa DOT in November 2011 for use in the development of this study. The CAC’s report is available at www.iowadot.gov/transportation2020/pdfs/CAC%20REPORT%20FINAL%20110211.pdf. The CAC’s report was developed utilizing analysis and information from the Iowa DOT. Therefore, the report forms the basis for this study and the two documents are very similar. Iowa is fortunate to have an extensive public roadway system that provides access to all areas of the state and facilitates the efficient movement of goods and people. However, it is also a tremendous challenge for the state, cities and counties to maintain and improve this system given flattening revenue, lost buying power, changing demands on the system, severe weather, and an aging system. This challenge didn’t appear overnight and for the last decade many studies have been completed to look into the situation and the legislature has taken significant action to begin addressing the situation. In addition, the Iowa DOT and Iowa’s cities and counties have worked jointly and independently to increase efficiency and streamline operations. All of these actions have been successful and resulted in significant changes; however, it is apparent much more needs to be done. A well-maintained, high-quality transportation system reduces transportation costs and provides consistent and reliable service. These are all factors that are critical in the evaluation companies undertake when deciding where to expand or locate new developments. The CAC and Iowa DOT heard from many Iowans that additional investment in Iowa’s roadway system is vital to support existing jobs and continued job creation in the state of Iowa. Beginning June 2011, the CAC met regularly to review material and discuss potential recommendations to address Iowa’s roadway funding challenges. This effort included extensive public outreach with meetings held in seven locations across Iowa and through a Transportation 2020 website hosted by the Iowa DOT (www.iowadot.gov/transportation2020). Over 500 people attended the public meetings held through the months of August and September, with 198 providing verbal or written comment at the meetings or through the website. Comments were received from a wide array of individuals. The public comments demonstrated overwhelming support for increased funding for Iowa’s roads. Through the public input process, several guiding principles were established to guide the development of recommendations. Those guiding principles are: • Additional revenues are restricted for road and bridge improvements only, like 95 percent of the current state road revenue is currently. This includes the fuel tax and registration fees. • State and local governments continue to streamline and become more efficient, both individually and by looking for ways to do things collectively. • User fee concept is preserved, where those who use the roads pay for them, including non¬residents. • Revenue-generating methods equitable across users. • Increase revenue generating mechanisms that are viable now but begin to implement and set the stage for longer-term solutions that bring equity and stability to road funding. • Continue Iowa’s long standing tradition of state roadway financing coming from pay-as-you-go financing. Iowa must not fall into the situation that other states are currently facing where the majority of their new program dollars are utilized to pay the debt service of past bonding. Based on the analysis of Iowa’s public roadway needs and revenue and the extensive work of the Governor’s Transportation 2020 Citizen Advisory Commission, the Iowa DOT has identified specific recommendations. The recommendations follow very closely the recommendations of the CAC (CAC recommendations from their report are repeated in Appendix B). Following is a summary of the recommendations which are fully documented beginning on page 21. 1. Through a combination of efficiency savings and increased revenue, a minimum of $215 million of revenue per year should be generated to meet Iowa’s critical roadway needs. 2. The Code of Iowa should be changed to require the study of the sufficiency of the state’s road funds to meet the road system’s needs every two years instead of every five years to coincide with the biennial legislative budget appropriation schedule. 3.Modify the current registration fee for electric vehicles to be based on weight and value using the same formula that applies to most passenger vehicles. 4.Consistent with existing Code of Iowa requirements, new funding should go to the TIME-21 Fund up to the cap ($225 million) and remaining new funding should be distributed consistent with the Road Use Tax Fund distribution formula. 5.The CAC recommended the Iowa DOT at least annually convene meetings with cities and counties to review the operation, maintenance and improvement of Iowa’s public roadway system to identify ways to jointly increase efficiency. In direct response to this recommendation, Governor Branstad directed the Iowa DOT to begin this effort immediately with a target of identifying $50 million of efficiency savings that can be captured from the over $1 billion of state revenue already provided to the Iowa DOT and Iowa’s cities and counties to administer, maintain and improve Iowa’s public roadway system. This would build upon past joint and individual actions that have reduced administrative costs and resulted in increased funding for improvement of Iowa’s public roadway system. Efficiency actions should be quantified, measured and reported to the public on a regular basis. 6.By June 30, 2012, Iowa DOT should complete a study of vehicles and equipment that use Iowa’s public roadway system but pay no user fees or substantially lower user fees than other vehicles and equipment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This Phase II project follows a previous project titled Strategies to Address Nighttime Crashes at Rural, Unsignalized Intersections. Based on the results of the previous study, the Iowa Highway Research Board (IHRB) indicated interest in pursuing further research to address the quality of lighting, rather than just the presence of light, with respect to safety. The research team supplemented the literature review from the previous study, specifically addressing lighting level in terms of measurement, the relationship between light levels and safety, and lamp durability and efficiency. The Center for Transportation Research and Education (CTRE) teamed with a national research leader in roadway lighting, Virginia Tech Transportation Institute (VTTI) to collect the data. An integral instrument to the data collection efforts was the creation of the Roadway Monitoring System (RMS). The RMS allowed the research team to collect lighting data and approach information for each rural intersection identified in the previous phase. After data cleanup, the final data set contained illuminance data for 101 lighted intersections (of 137 lighted intersections in the first study). Data analysis included a robust statistical analysis based on Bayesian techniques. Average illuminance, average glare, and average uniformity ratio values were used to classify quality of lighting at the intersections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most counties have bridges that are no longer adequate, and are faced with large capital expenditure for replacement structures of the same size. In this regard, low water stream crossings (LWSCs) can provide an acceptable, low cost alternative to bridges and culverts on low volume and reduced maintenance level roads. In addition to providing a low cost option for stream crossings, LWSCs have been designed to have the additional benefit of stream bed stabilization. Considerable information on the current status of LWSCs in Iowa, along with insight of needs for design assistance, was gained from a survey of county engineers that was conducted as part of this research (Appendix A). Copies of responses and analysis are included in Appendix B. This document provides guidelines for the design of LWSCs. There are three common types of LWSCs: unvented ford, vented ford with pipes, and low water bridges. Selection among these depends on stream geometry, discharge, importance of road, and budget availability. To minimize exposure to tort liability, local agencies using low water stream crossings should consider adopting reasonable selection and design criteria and certainly provide adequate warning of these structures to road users. The design recommendations included in this report for LWSCs provide guidelines and suggestions for local agency reference. Several design examples of design calculations are included in Appendix E.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The film depicts period traffic congestion, sharp and winding sections of road, steep hills making trucks slow to a crawl, and dangerous vehicle and pedestrian crossings, all important reasons why highway design and safety improvements, and highway relocation were needed. In fact, when the film was produced, U.S. 30 or the Lincoln Highway was the busiest primary road in Iowa; and the section between State Center and Boone was deemed “critical,” meaning it was considered dangerous by the ISHC’s Efficiency Standards.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Rebuild Iowa Office (RIO) continues to coordinate the state‘s recovery effort from the storms, tornadoes and floods of 2008. Much has been accomplished since the Office‘s last quarterly report was issued in July 2010. State funding has been disbursed to help Iowans with unmet needs and housing. Local governments and entities are utilizing millions of federal dollars so thousands of disaster-impacted homeowners can be offered a buyout. More infrastructure projects are under construction and new neighborhoods are being built with mitigation efforts in mind. However, as Iowa continues to celebrate many successes along the road to recovery, it must also address the numerous challenges that are encountered along the path. Recovering from the state‘s largest disaster must be looked at as a marathon, not a sprint. Over the past three months, the RIO has especially remained focused on helping small business owners impacted by the 2008 disasters. Many disaster-affected businesses have reopened their doors, however their debt load continues to be overwhelming and many still struggle with the timeliness of the disbursement of funds. This report describes how programs and recent modifications are working to assist recovering businesses. This report contains updates on housing progress while outlining the complexities behind certain programs and the bottlenecks communities are facing due to strict federal guidelines for implementation. This following pages also describe how Iowa is implementing Smart Planning principles, publicizing flood awareness through outreach efforts and preparing a blueprint for the state to follow when future disasters occur. As always, the RIO recognizes and thanks the countless leaders and front-line workers from local, regional, state and federal government, businesses, non-profit organizations and private citizens that have provided input, support and leadership. Their dedication to Iowa‘s disaster recovery has made the plans and projects on the following pages possible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traffic safety engineers are among the early adopters of Bayesian statistical tools for analyzing crash data. As in many other areas of application, empirical Bayes methods were their first choice, perhaps because they represent an intuitively appealing, yet relatively easy to implement alternative to purely classical approaches. With the enormous progress in numerical methods made in recent years and with the availability of free, easy to use software that permits implementing a fully Bayesian approach, however, there is now ample justification to progress towards fully Bayesian analyses of crash data. The fully Bayesian approach, in particular as implemented via multi-level hierarchical models, has many advantages over the empirical Bayes approach. In a full Bayesian analysis, prior information and all available data are seamlessly integrated into posterior distributions on which practitioners can base their inferences. All uncertainties are thus accounted for in the analyses and there is no need to pre-process data to obtain Safety Performance Functions and other such prior estimates of the effect of covariates on the outcome of interest. In this slight, fully Bayesian methods may well be less costly to implement and may result in safety estimates with more realistic standard errors. In this manuscript, we present the full Bayesian approach to analyzing traffic safety data and focus on highlighting the differences between the empirical Bayes and the full Bayes approaches. We use an illustrative example to discuss a step-by-step Bayesian analysis of the data and to show some of the types of inferences that are possible within the full Bayesian framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tort claims resulting from alleged highway defects have introduced an additional element in the planning, design, construction, and maintenance of highways. A survey of county governments in Iowa was undertaken in order to quantify the magnitude and determine the nature of this problem. This survey included the use of mailed questionnaires and personal interviews with County Engineers. Highway-related claims filed against counties in Iowa amounted to about $52,000,000 during the period 1973 through 1978. Over $30,000,000 in claims was pending at the end of 1978. Settlements of judgments were made at a cost of 12.2% of the amount claimed for those claims that had been disposed of, not including costs for handling claims, attorney fees, or court costs. There was no clear time trend in the amount of claims for the six-year period surveyed, although the anount claimed in 1978 was about double the average for the preceding five years. Problems that resulted in claims for damages from counties have generally related to alleged omissions in the use of traffic control devices or defects, often temporary, resulting from alleged inadequacies in highway maintenance. The absence of stop signs or warning signs often has been the central issue in a highway-related tort claim. Maintenance problems most frequently alleged have included inadequate shoulders, surface roughness, ice o? snow conditions, and loose gravel. The variation in the occurrence of tort claims among 85 counties in Iowa could not be related to any of the explanatory variables that were tested. Claims hppeared to have occurred randomly. However, using data from a subsample of 11 counties, a significant relationship was shown probably to exist between the amount of tort claims and the extensiveness of use of wcirning signs on the respective county road systems. Although there was no indication in any county that their use of warning signs did not conform with provisions of the Manual on Uniform Traffic Control Devices (Federal Highway Administration, Government Printing Office, Washington, D.C., 1978), many more warning signs were used in some counties than would be required to satisfy this minimum requirement. Sign vandalism reportedly is a problem in all counties. The threat of vandalism and the added costs incurred thereby have tended to inhibit more extensive use of traffic control devices. It also should be noted that there is no indication from this research of a correlation between the intensiveness of sign usage and highway safety. All highway maintenance activities introduce some extraordinary hazard for motorists. Generally effective methodologies have evolved for use on county road systems for routine maintenance activities, procedures that tend to reduce the hazard to practical and reasonably acceptable levels. Blading of loose-surfaced roads is an examples such a routine maintenance activity. Alternative patterns for blading that were investigated as part of this research offered no improvements in safety when compared with the method in current use and introduced a significant additional cost that was unacceptable, given the existing limitations in resources available for county roads.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research was undertaken to define an appropriate level of use of traffic control devices on rural secondary roads that carry very low traffic volumes. The goal of this research was to improve the safety and efficiency of travel on the rural secondary road system. This goal was to be accomplished by providing County Engineers with guidance concerning the cost-effective use of traffic control devices on very low volume rural roads. A further objective was to define the range of traffic volumes on the roads for which the recommendations would be appropriate. Little previous research has been directed toward roads that carry very low traffic volumes. Consequently, the factual input for this research was developed by conducting an inventory of the signs and markings actually in use on 2,069 miles of rural road in Iowa. Most of these roads carried 15 or fewer vehicles per day. Additional input was provided by a survey of the opinions of County Engineers and Supervisors in Iowa. Data from both the inventory and the opinion survey indicated a considerable lack of uniformity in the application of signs on very low volume rural roads. The number of warning signs installed varied from 0.24 per mile to 3.85 per mile in the 21 counties in which the inventory was carried out. The use of specific signs not only varied quite widely among counties but also indicated a lack of uniform application within counties. County officials generally favored varying the elaborateness of signing depending upon the type of surface and the volume of traffic on different roads. Less elaborate signing would be installed on an unpaved road than on a paved road. A concensus opinion was that roads carrying fewer than 25 vehicles per day should have fewer signs than roads carrying higher volumes. Although roads carrying 0 to 24 vehicles per day constituted over 24% of the total rural secondary system, they carried less than 3% of the total travel on that system. Virtually all of these roads are classified as area service roads and would thus be expected to carry only short trips primarily by local motorists. Consequently, it was concluded that the need for warning signs rarely can be demonstrated on unpaved rural roads with traffic volumes of fewer than 25 vehicles per day. It is recommended that each county designate a portion of its roads as an Area Service Level B system. All road segments with very low traffic volumes should be considered for inclusion in this system. Roads included in this system may receive a lesser level of maintenance and a reduced level of signing. The county is also afforded protection from liability arising from accidents occurring on roads designated as part of an Area Service Level B system. A uniform absence of warning signs on roads of this nature is not expected to have any discernible effect on the safety or quality of service on these very low volume roads. The resources conserved may be expended more effectively to upgrade maintenance and traffic control on roads carrying higher volumes where the beneficial effect on highway safety and service will be much more consequential.