352 resultados para Canada. Natural Resources Canada
Resumo:
Newsletter for Department of Natural Resources, Waste Management Division
Resumo:
Newsletter produced by Department Natural Resources, Waste Managment Division
Resumo:
Newsletter prdouced by Department of Natural Resources, Waste Matters Division
Resumo:
Newsletter produced by Department of Natural Resources, Waste Management Division
Resumo:
The TMDL and Water Quality Assessment Section of the Iowa DNR Environmental Services Division have released the report entitled, “Biological Assessment of Iowa’s Wadeable Streams.” The report describes a framework for conducting stream bioassessments and how it is used to evaluate the biological condition of Iowa’s wadeable rivers and streams. The document also serves as a foundation for developing biological water quality standards for the protection of designated aquatic life uses and measuring progress toward the achievement of Federal Clean Water Act goals.
Resumo:
Report to Margaret Thompson, Chief Clerk, about Recycled Content Plastic Bag and Soy Inks.
Resumo:
Fishing Regulations for the state of Iowa
Resumo:
Newsletter produced by Iowa Department of Natural Resources.
Resumo:
A validation study has been performed using the Soil and Water Assessment Tool (SWAT) model with data collected for the Upper Maquoketa River Watershed (UMRW), which drains over 16,000 ha in northeast Iowa. This validation assessment builds on a previous study with nested modeling for the UMRW that required both the Agricultural Policy EXtender (APEX) model and SWAT. In the nested modeling approach, edge-offield flows and pollutant load estimates were generated for manure application fields with APEX and were then subsequently routed to the watershed outlet in SWAT, along with flows and pollutant loadings estimated for the rest of the watershed routed to the watershed outlet. In the current study, the entire UMRW cropland area was simulated in SWAT, which required translating the APEX subareas into SWAT hydrologic response units (HRUs). Calibration and validation of the SWAT output was performed by comparing predicted flow and NO3-N loadings with corresponding in-stream measurements at the watershed outlet from 1999 to 2001. Annual stream flows measured at the watershed outlet were greatly under-predicted when precipitation data collected within the watershed during the 1999-2001 period were used to drive SWAT. Selection of alternative climate data resulted in greatly improved average annual stream predictions, and also relatively strong r2 values of 0.73 and 0.72 for the predicted average monthly flows and NO3-N loads, respectively. The impact of alternative precipitation data shows that as average annual precipitation increases 19%, the relative change in average annual streamflow is about 55%. In summary, the results of this study show that SWAT can replicate measured trends for this watershed and that climate inputs are very important for validating SWAT and other water quality models.
Resumo:
The development of the field-scale Erosion Productivity Impact Calculator (EPIC) model was initiated in 1981 to support assessments of soil erosion impacts on soil productivity for soil, climate, and cropping conditions representative of a broad spectrum of U.S. agricultural production regions. The first major application of EPIC was a national analysis performed in support of the 1985 Resources Conservation Act (RCA) assessment. The model has continuously evolved since that time and has been applied for a wide range of field, regional, and national studies both in the U.S. and in other countries. The range of EPIC applications has also expanded greatly over that time, including studies of (1) surface runoff and leaching estimates of nitrogen and phosphorus losses from fertilizer and manure applications, (2) leaching and runoff from simulated pesticide applications, (3) soil erosion losses from wind erosion, (4) climate change impacts on crop yield and erosion, and (5) soil carbon sequestration assessments. The EPIC acronym now stands for Erosion Policy Impact Climate, to reflect the greater diversity of problems to which the model is currently applied. The Agricultural Policy EXtender (APEX) model is essentially a multi-field version of EPIC that was developed in the late 1990s to address environmental problems associated with livestock and other agricultural production systems on a whole-farm or small watershed basis. The APEX model also continues to evolve and to be utilized for a wide variety of environmental assessments. The historical development for both models will be presented, as well as example applications on several different scales.
Resumo:
Stability berms are commonly constructed where roadway embankments cross soft or unstable ground conditions. Under certain circumstances, the construction of stability berms cause unfavorable environmental impacts, either directly or indirectly, through their effect on wetlands, endangered species habitat, stream channelization, longer culvert lengths, larger right-of-way purchases, and construction access limits. Due to an ever more restrictive regulatory environment, these impacts are problematic. The result is the loss of valuable natural resources to the public, lengthy permitting review processes for the department of transportation and permitting agencies, and the additional expenditures of time and money for all parties. The purpose of this project was to review existing stability berm alternatives for potential use in environmentally sensitive areas. The project also evaluates how stabilization technologies are made feasible, desirable, and cost-effective for transportation projects and determines which alternatives afford practical solutions for avoiding and minimizing impacts to environmentally sensitive areas. An online survey of engineers at state departments of transportation was also conducted to assess the frequency and cost effectiveness of the various stabilization technologies. Geotechnical engineers that responded to the survey overwhelmingly use geosynthetic reinforcement as a suitable and cost-effective solution for stabilizing embankments and cut slopes. Alternatively, chemical stabilization and installation of lime/cement columns is rarely a remediation measure employed by state departments of transportation.
Resumo:
Tillage systems play a significant role in agricultural production throughout Iowa and the Midwest. It has been well documented that increased tillage intensities can reduce soil organic matter in the topsoil due to increased microbial activity and carbon (C ) oxidation. The potential loss of soil organic matter due to tillage operations is much higher for high organic matter soils than low organic matter soils. Tillage effects on soil organic matter can be magnified through soil erosion and loss of soil productivity. Soil organic matter is a natural reservoir for nutrients, buffers against soil erosion, and improves the soil environment to sustain soil productivity. Maintaining soil productivity requires an agriculture management system that maintains or improves soil organic matter content. Combining cropping systems and conservation tillage practices, such as no-tillage, strip-tillage, or ridge-tillage, are proven to be very effective in improving soil organic matter and soil quality.
Resumo:
The United States has invested large sums of resources in multiple conservation programs for agriculture over the past century. In this paper we focus on the impacts of program interactions. Specifically, using an integrated economic and bio-physical modeling framework, we consider the impacts of the presence of working land programs on a land retirement for an important agricultural region—the Upper Mississippi River Basin (UMRB). Compared to a land retirement only program, we find that the presence of a working land program for conservation tillage results in significantly lower predicted signups for land retirement at a given rental rate. We also find that the presence of both a large working land and land retirement program can result in more environmental benefits and income transfers than a land retirement only program can achieve.
Resumo:
Pigouvian taxes are typically imposed in situations where there is imperfect knowledge on the extent of damage caused by a producing firm. A regulator imposing imperfectly informed Pigouvian taxes may cause the firms that should (should not) produce to shut down (produce). In this paper we use a Bayesian information framework to identify optimal signal-conditioned taxes in the presence of such losses. The tax system involves reducing (increasing) taxes on firms identified as causing high (low) damage. Unfortunately, when an abatement decision has to be made, the tax system that minimizes production distortions also dampens the incentive to abate. In the absence of wrong-firm concerns, a regulator can solve the problem by not adjusting taxes for signal noise. When wrong-firm losses are a concern, the regulator has to trade off losses from distorted production incentives with losses from distorted abatement incentives. The most appropriate policy may involve a combination of instruments.
Resumo:
Report to Margaret Thomson, Chief Clerk, about Recycled Content Plastic Bag and Soy Inks.