103 resultados para Animation, Sound, Design
Resumo:
Cold In-Place Recycling (CIR) has been used widely in rehabilitating the rural highways because it improves a long-term pavement performance. A CIR layer is normally covered by a hot mix asphalt (HMA) overlay in order to protect it from water ingress and traffic abrasion and obtain the required pavement structure and texture. Curing is the term currently used for the period of time that a CIR layer should remain exposed to drying conditions before an HMA overlay is placed. The industry standard for curing time is 10 days to 14 days or a maximum moisture content of 1.5 percent, which appear to be very conservative. When the exposed CIR layer is required to carry traffic for many weeks before the wearing surface is placed, it increases the risk of a premature failure in both CIR layer and overlay. This study was performed to explore technically sound ways to identify minimum in-place CIR properties necessary to permit placement of the HMA overlay. To represent the curing process of CIR pavement in the field construction, three different laboratory curing procedures were examined: 1) uncovered, 2) semi-covered and 3) covered specimens. The indirect tensile strength of specimens in all three curing conditions did not increase during an early stage of curing but increased during a later stage of curing usually when the moisture content falls below 1.5%. Dynamic modulus and flow number increased as curing time increased and moisture contents decreased. For the same curing time, CIR-foam specimens exhibited the higher tensile strength and less moisture content than CIR-emulsion. The laboratory test results concluded that the method of curing temperature and length of the curing period significantly affect the properties of the CIR mixtures. The moisture loss index was developed to predict the moisture condition in the field and, in the future, this index be calibrated with the measurements of temperature and moisture of a CIR layer in the field.
Resumo:
In response to the mandate on Load and Resistance Factor Design (LRFD) implementations by the Federal Highway Administration (FHWA) on all new bridge projects initiated after October 1, 2007, the Iowa Highway Research Board (IHRB) sponsored these research projects to develop regional LRFD recommendations. The LRFD development was performed using the Iowa Department of Transportation (DOT) Pile Load Test database (PILOT). To increase the data points for LRFD development, develop LRFD recommendations for dynamic methods, and validate the results of LRFD calibration, 10 full-scale field tests on the most commonly used steel H-piles (e.g., HP 10 x 42) were conducted throughout Iowa. Detailed in situ soil investigations were carried out, push-in pressure cells were installed, and laboratory soil tests were performed. Pile responses during driving, at the end of driving (EOD), and at re-strikes were monitored using the Pile Driving Analyzer (PDA), following with the CAse Pile Wave Analysis Program (CAPWAP) analysis. The hammer blow counts were recorded for Wave Equation Analysis Program (WEAP) and dynamic formulas. Static load tests (SLTs) were performed and the pile capacities were determined based on the Davisson’s criteria. The extensive experimental research studies generated important data for analytical and computational investigations. The SLT measured load-displacements were compared with the simulated results obtained using a model of the TZPILE program and using the modified borehole shear test method. Two analytical pile setup quantification methods, in terms of soil properties, were developed and validated. A new calibration procedure was developed to incorporate pile setup into LRFD.
Resumo:
Three pavement design software packages were compared with regards to how they were different in determining design input parameters and their influences on the pavement thickness. StreetPave designs the concrete pavement thickness based on the PCA method and the equivalent asphalt pavement thickness. The WinPAS software performs both concrete and asphalt pavements following the AASHTO 1993 design method. The APAI software designs asphalt pavements based on pre-mechanistic/empirical AASHTO methodology. First, the following four critical design input parameters were identified: traffic, subgrade strength, reliability, and design life. The sensitivity analysis of these four design input parameters were performed using three pavement design software packages to identify which input parameters require the most attention during pavement design. Based on the current pavement design procedures and sensitivity analysis results, a prototype pavement design and sensitivity analysis (PD&SA) software package was developed to retrieve the pavement thickness design value for a given condition and allow a user to perform a pavement design sensitivity analysis. The prototype PD&SA software is a computer program that stores pavement design results in database that is designed for the user to input design data from the variety of design programs and query design results for given conditions. The prototype Pavement Design and Sensitivity Analysis (PA&SA) software package was developed to demonstrate the concept of retrieving the pavement design results from the database for a design sensitivity analysis. This final report does not include the prototype software which will be validated and tested during the next phase.
Resumo:
The present study is an integral part of a broader study focused on the design and implementation of self-cleaning culverts, i.e., configurations that prevent the formation of sediment deposits after culvert construction or cleaning. Sediment deposition at culverts is influenced by many factors, including the size and characteristics of material of which the channel is composed, the hydraulic characteristics generated under different hydrology events, the culvert geometry design, channel transition design, and the vegetation around the channel. The multitude of combinations produced by this set of variables makes the investigation of practical situations a complex undertaking. In addition to the considerations above, the field and analytical observations have revealed flow complexities affecting the flow and sediment transport through culverts that further increase the dimensions of the investigation. The flow complexities investigated in this study entail: flow non-uniformity in the areas of transition to and from the culvert, flow unsteadiness due to the flood wave propagation through the channel, and the asynchronous correlation between the flow and sediment hydrographs resulting from storm events. To date, the literature contains no systematic studies on sediment transport through multi-box culverts or investigations on the adverse effects of sediment deposition at culverts. Moreover, there is limited knowledge about the non-uniform, unsteady sediment transport in channels of variable geometry. Furthermore, there are few readily useable (inexpensive and practical) numerical models that can reliably simulate flow and sediment transport in such complex situations. Given the current state of knowledge, the main goal of the present study is to investigate the above flow complexities in order to provide the needed insights for a series of ongoing culvert studies. The research was phased so that field observations were conducted first to understand the culvert behavior in Iowa landscape. Modeling through complementary hydraulic model and numerical experiments was subsequently carried out to gain the practical knowledge for the development of the self-cleaning culvert designs.
Resumo:
Based on previous National Bridge Inventory data, the state of Iowa has nearly 20,000 bridges on low-volume roads (LVRs). Thus, these bridges are the responsibility of the county engineers. Of the bridges on the county roads, 24 percent are structurally deficient and 5 percent are functionally obsolete. A large number of the older bridges on the LVRs are built on timber piling with timber back walls. In many cases, as timber abutments and piers age, the piling and back wall planks deteriorate at a rate faster than the bridge superstructure. As a result, a large percentage of the structurally deficient bridges on LVRs are classified as such because of the condition of the timber substructure elements. As funds for replacing bridges decline and construction costs increase, effective rehabilitation and strengthening techniques for extending the life of the timber substructures in bridges with structurally sound superstructures has become even more important. Several counties have implemented various techniques to strengthen/repair damaged piling, however, there is minimal data documenting the effectiveness of these techniques. There are numerous instances where cracked and failed pilings have been repaired. However, there are no experimental data on the effectiveness of the repairs or on the percentage of load transferred from the superstructure to the sound pile below. To address the research needs, a review and evaluation of current maintenance and rehabilitation methods was completed. Additionally, a nationwide survey was conducted to learn the methods used beyond Iowa. Field investigation and live-load testing of bridges with certain Iowa methods was completed. Lastly, laboratory testing of new strengthening and rehabilitation methods was performed.
Resumo:
This report concerns a proposed Parkway and Scenic Highway along both sides of the Missouri River in Harrison, Pottawattamie and Mills County in Iowa and Washington, Douglas and Sarpy Counties in Nebraska. This Parkway will make the Missouri River valley accessible to the public, link existing and planned attractions and facilitate planned development while at the same time preserving for posterity the best of the natural attributes of the area.
Resumo:
Soil consolidation and erosion caused by roadway runoff have exposed the upper portions of steel piles at the abutments of numerous bridges, leaving them susceptible to accelerated corrosion rates due to the abundance of moisture, oxygen, and chlorides at these locations. This problem is compounded by the relative inaccessibility of abutment piles for close-up inspection and repair. The objective of this study was to provide bridge owners with recommendations for effective methods of addressing corrosion of steel abutment piles in existing and future bridges A review of available literature on the performance and protection of steel piles exposed to a variety of environments was performed. Eight potential coating systems for use in protecting existing and/or new piles were selected and subjected to accelerated corrosion conditions in the laboratory. Two surface preparation methods were evaluated in the field and three coating systems were installed on three piles at an existing bridge where abutment piles had been exposed by erosion. In addition, a passive cathodic protection (CP) system using sacrificial zinc anodes was tested in the laboratory. Several trial flowable mortar mixes were evaluated for use in conjunction with the CP system. For existing abutment piles, application of a protective coating system is a promising method of mitigating corrosion. Based on its excellent performance in accelerated corrosion conditions in the laboratory on steel test specimens with SSPC-SP3, -SP6, and -SP10 surface preparations, glass flake polyester is recommended for use on existing piles. An alternative is epoxy over organic zinc rich primer. Surface preparation of existing piles should include abrasive blast cleaning to SSPC-SP6. Although additional field testing is needed, based on the results of the laboratory testing, a passive CP system could provide an effective means of protecting piles in existing bridges when combined with a pumped mortar used to fill voids between the abutment footing and soil. The addition of a corrosion inhibitor to the mortar appears to be beneficial. For new construction, shop application of thermally sprayed aluminum or glass flake polyester to the upper portion of the piles is recommended.
Resumo:
Portland cement pervious concrete (PCPC) is being used more frequently due to its benefits in reducing the quantity of runoff water,improving water quality, enhancing pavement skid resistance during storm events by rapid drainage of water, and reducing pavement noise. In the United States, PCPC typically has high porosity and low strength, which has resulted in the limited use of pervious concrete, especially in hard wet freeze environments (e.g., the Midwestern and Northeastern United States and other parts of the world).Improving the strength and freeze-thaw durability of pervious concrete will allow an increase in its use in these regions. The objective of this research is to develop a PCPC mix that not only has sufficient porosity for stormwater infiltration, but also desirable strength and freeze-thaw durability. In this research, concrete mixes were designed with various sizes and types of aggregates, binder contents, and admixture amounts. The engineering properties of the aggregates were evaluated. Additionally, the porosity, permeability, strength, and freeze-thaw durability of each of these mixes was measured. Results indicate that PCPC made with single-sized aggregate has high permeability but not adequate strength. Adding a small percent of sand to the mix improves its strength and freeze-thaw resistance, but lowers its permeability. Although adding sand and latex improved the strength of the mix when compared with single-sized mixes, the strength of mixes where only sand was added were higher. The freeze-thaw resistance of PCPC mixes with a small percentage of sand also showed 2% mass loss after 300 cycles of freeze-thaw. The preliminary results of the effects of compaction energy on PCPC properties show that compaction energy significantly affects the freeze-thaw durability of PCPC and, to a lesser extent, reduces compressive strength and split strength and increases permeability.
Resumo:
Information concerning standard design practices and details for the Iowa Department of Transportation (IDOT) was provided to the research team. This was reviewed in detail so that the researchers would be familiar with the terminology and standard construction details. A comprehensive literature review was completed to gather information concerning constructability concepts applicable to bridges. It was determined that most of the literature deals with constructability as a general topic with only a limited amount of literature with specific concepts for bridge design and construction. Literature was also examined concerning the development of appropriate microcomputer databases. These activities represent completion of Task 1 as identified in the study.
Resumo:
The Mechanistic-Empirical Pavement Design Guide (MEPDG) was developed under National Cooperative Highway Research Program (NCHRP) Project 1-37A as a novel mechanistic-empirical procedure for the analysis and design of pavements. The MEPDG was subsequently supported by AASHTO’s DARWin-ME and most recently marketed as AASHTOWare Pavement ME Design software as of February 2013. Although the core design process and computational engine have remained the same over the years, some enhancements to the pavement performance prediction models have been implemented along with other documented changes as the MEPDG transitioned to AASHTOWare Pavement ME Design software. Preliminary studies were carried out to determine possible differences between AASHTOWare Pavement ME Design, MEPDG (version 1.1), and DARWin-ME (version 1.1) performance predictions for new jointed plain concrete pavement (JPCP), new hot mix asphalt (HMA), and HMA over JPCP systems. Differences were indeed observed between the pavement performance predictions produced by these different software versions. Further investigation was needed to verify these differences and to evaluate whether identified local calibration factors from the latest MEPDG (version 1.1) were acceptable for use with the latest version (version 2.1.24) of AASHTOWare Pavement ME Design at the time this research was conducted. Therefore, the primary objective of this research was to examine AASHTOWare Pavement ME Design performance predictions using previously identified MEPDG calibration factors (through InTrans Project 11-401) and, if needed, refine the local calibration coefficients of AASHTOWare Pavement ME Design pavement performance predictions for Iowa pavement systems using linear and nonlinear optimization procedures. A total of 130 representative sections across Iowa consisting of JPCP, new HMA, and HMA over JPCP sections were used. The local calibration results of AASHTOWare Pavement ME Design are presented and compared with national and locally calibrated MEPDG models.
Resumo:
Currently there are no guidelines within the Manual on Uniform Traffic Control Devices (MUTCD) on construction phasing and maintenance of traffic (MOT) for retrofit construction and maintenance projects involving innovative geometric designs. The research presented in this report addressed this gap in existing knowledge by investigating the state of the practice of construction phasing and MOT for several types of innovative geometric designs including the roundabout, single point urban interchange (SPUI), diverging diamond interchange (DDI), restricted-crossing left turn (RCUT), median U-turn (MUT), and displaced left turn (DLT). This report provides guidelines for transportation practitioners in developing construction phasing and MOT plans for innovative geometric designs. This report includes MOT Phasing Diagrams to assist in the development of MOT strategies for innovative designs. The MOT Phasing Diagrams were developed through a review of literature, survey, interviews with practitioners, and review of plans from innovative geometric design projects. These diagrams are provided as a tool to assist in improving work zone safety and mobility through construction of projects with innovative geometric designs. The aforementioned synthesis of existing knowledge documented existing practices for these types of designs.
Resumo:
The purpose of this manual is to provide guidelines for low water stream crossings (LWSC). Rigid criteria for determining the applicability of a LWSC to a given site are not established nor is a 'cookbook" procedure for designing a LWSC presented. Because conditions vary from county to county and from site to site within the county, judgment must be applied to the suggestions contained in this manual. A LWSC is a stream crossing that will be flooded periodically and closed to traffic. Carstens (1981) has defined a LWSC as "a ford, vented ford (one having some number of culvert pipes), low water bridge, or other structure that is designed so that its hydraulic capacity will be insufficient one or more times during a year of normal rainfall." In this manual, LWSC are subdivided into these same three main types: unvented fords, vented fords and low water bridges. Within the channel banks, an unvented ford can have its road profile coincident with the stream bed or can have its profile raised some height above the stream bed.
Resumo:
The primary objective of this project is to develop a design manual that would aid the county or municipal engineer in making structurally sound bridge strengthening or replacement decisions. The contents of this progress report are related only to Phase I of the study and deal primarily with defining the extent of the bridge problem in Iowa. In addition, the types of bridges to which the manual should be directed have been defined.