136 resultados para Aggregates.
Resumo:
Fly ash was used in this evaluation study to replace 15% of the cement in Class D-57 structural concrete containing ASTM C494 Type B, retarding admixtures. Two Class "C" ashes and one Class "F" ash from Iowa approved sources were examined in each mix. When Class "C" ashes were used, they were substituted on the basis of 1.0 pound for each pound of cement removed. When Class "F" ash was used, it was substituted on the basis of 1.25 pounds of ash for each pound of cement removed. Compressive strengths of the retarded mixes, with and without fly ash, were determined at 7, 28 and 56 days of age. In most cases, with few exceptions, the mixes containing the fly ash exhibited higher strengths than the same concrete mix without the fly ash. The exceptions were the 7, 28, and 56 days of the mixes containing Class F ash. The freeze/thaw durability of the concrete studied was not affected by the presence of fly ash. The data obtained suggested that the present Class D-57 structural concrete mix with retarding admixtures can be modified to allow the substitution of 15% of the cement with an approved fly ash when Class III coarse aggregates are used. Setting times of the concretes were not materially changed due to the incorporation of fly ash.
Resumo:
Friction testing of pavements has been a continuing effort by the Iowa Department of Transportation since 1969. This report details results of tests of asphaltic concrete pavements on the primary and interstate road systems. Both sprinkle treated and non-sprinkle treated pavements placed between 1975 - 1985 are included. A total of 1785 miles representing 216 separate paving projects were examined. The effect of fog sealing sprinkle treated pavements was studied by testing friction levels before and after the application of the fog seals. Conclusions of the report are: 1. Current aggregate selection criteria for a.c. pavement surface courses provides adequate friction levels through 10 years and should remain effective through a 15 year design life. 2. Sprinkle treatment of pavements has, for the most part, provided macrotexture in the pavement surface as evidenced by smooth tire testing. 3. Fog sealing sprinkle treated pavements does not significantly alter the friction properties.
Resumo:
A program of A (90 day moist room), B (14 day moist room) and C (7 day moist room and 7 day 50%_humidity) type curing for the R-11-Z program of durability of concrete using the automatic freeze and thaw machine (ASTM C-291) has been used in the Materials Department of the Iowa State Highway Commission since December 6, 1966. A summary of the results obtained from then until March 25, 1968, indicates that the B and C type curing are yielding very little valuable information. However, the A cure exhibits a wide range of durability factors and also groups the aggregates in an order which is related to the service record (there are definite exceptions. The biggest disadvantage to the A cure is the length of time that it takes to complete the test (90 day cure and 38 day test). The Kansas Highway Department has experimented with different cements and aggregates in order to determine which combination offers a concrete with the best durability factor possible. In an experimental test section of highway, concrete made with a Type II cement appeared to have better durability than others made with Type I cements. Because of this, a question has been raised at the Iowa State Highway Commission - Can concrete made with Type II cements, because of a lesser amount of tricalcium aluminate, yield better durability than concrete made with Type I cements?
Resumo:
Granular shoulders need to be maintained on a regular basis because edge ruts and potholes develop, posing a safety hazard to motorists. The successful mitigation of edge-rut issues for granular shoulders would increase safety and reduce the number of procedures currently required to maintain granular shoulders in Iowa. In addition, better performance of granular shoulders reduces the urgency to pave granular shoulders. Delaying or permanently avoiding paving shoulders where possible allows more flexibility in making investments in the road network. To stabilize shoulders and reduce the number of maintenance cycles necessary per season, one possible stabilizing agent—acidulated soybean oil soapstock—was investigated in this research. A pilot testing project was conducted for selected problematic shoulders in northern and northeastern Iowa. Soapstock was applied on granular shoulders and monitored during application and pre- and post-application. Application techniques were documented and the percentage of application success was calculated for each treated shoulder section. As a result of this research, it was concluded that soybean oil soapstock can be an effective stabilizer for granular shoulders under certain conditions. The researchers also developed draft specifications that could possibly be used to engage a contractor to perform the work using a maintenance-type construction contract. The documented application techniques from this project could be used as guidance for those who want to apply soapstock for stabilizing granular shoulders but might not be familiar with this technique.
Resumo:
During the summer of 1963 the Materials Department noted the three to four ·year old concrete pavement on I-80 in Cass County was showing extensive surface cracking adjacent to joints and cracks. An examination of the pavement and a few cores from the cracked areas was made by the I.S.H.C. Materials Department and later by David Stark of the P.C.A. Additional surveys were conducted on other concrete pavement made with coarse aggregate from similar rock from two different sources. Blue-line cracking was found on some primary pavement and the indications of incipient cracks were seen on I-29 in Pottawattamie County, north of Council Bluffs. A good "D"-crack pattern is now evident. Surveys were then made of the entire Interstate concrete pavement. No other sections of Interstate were "D"-cracking, although some sections showed joint discoloration. None of these pavements, including the discolored sections, contained "D"-crack associated aggregates. At the same time as the Interstate survey additional pavements and sources were checked. Some "D"-cracking was noticed on certain sections of primary pavement 5-10 years old, in the vicinity of Waterloo and Cedar Rapids. The "D"-cracked pavement was from three aggregate sources, the Newton, Otis, and Burton Ave. quarries. Other pavements in this area that were older or from· different· coarse aggregate sources were not "D"-cracked. We believe that all the "D"-cracking is related, although dedolomitization is probably involved in the intermediate dolomite rocks.
Resumo:
The primary purposes of this investigation are: 1) To delineate flood plain deposits with different geologic and engineering properties. 2) To provide basic data necessary for any attempt at stabilizing flood plain deposits. The alluvial valley of the Missouri River adjacent to Iowa was chosen as the logical place to begin this study. The river forms the western boundary of the state for an airline distance of approximately 139 miles; and the flood plain varies from a maximum width of approximately 18 miles (Plates 2 and 3, Sheets 75 and 75L) to approximately 4 miles near Crescent, Iowa (Plate 8, Sheet 66). The area studied includes parts of Woodbury, Monona, Harrison, Pottawattamie, Mills, and Fremont counties in Iowa and parts of Dakota, Thurston, Burt, Washington, Douglas, Sarpy, Cass and Otoe counties in Nebraska. Plate l is an index map of the area under consideration.
Resumo:
This report presents the results of a comparative laboratory study between well- and gap-graded aggregates used in asphalt concrete paving mixtures. A total of 424 batches of asphalt concrete mixtures and 3,960 Marshall and Hveem specimens were examined. There is strong evidence from this investigation that, with proper-combinations of aggregates and asphalts, both continuous- and gap-graded aggregates can produce mixtures of high density and of qualities meeting current design criteria. There is also reason to believe that the unqualified acceptance of some supposedly desirable, constant, mathematical relationship between adjacent particle sizes of the form such as Fuller's curve p = 100(d/D)^n is not justified. It is recommended that the aggregate grading limits be relaxed or eliminated and that the acceptance or rejection of an aggregate for use in asphalt pavement be based on individual mixture evaluation. Furthermore, because of the potential attractiveness of gap-graded asphalt concrete in cost, quality, and skid and wear resistance, selected gap-graded mixtures are recommended for further tests both in the laboratory and in the field, especially in regard to ease of compaction and skid and wear resistance.
Resumo:
This report presents the results of a comparative laboratory study between well- and gap-graded aggregates used in asphalt concrete paving mixtures. A total of 424 batches of asphalt concrete mixtures and 3, 960 Marshall and Hveem specimens were examined. The main thrust of the statistical analysis conducted in this experiment was in the calibration study and in Part I of the experiment. In the former study, the compaction procedure between the Iowa State University Lab and the Iowa Highway Commission Lab was calibrated. By an analysis of the errors associated with the measurements we were able to separate the "preparation" and "determination" errors for both laboratories as well as develop the calibration curve which describes the relationship between the compaction procedures at the two labs. In Part I, the use of a fractional factorial design in a split plot experiment in measuring the effect of several factors on asphalt concrete strength and weight was exhibited. Also, the use of half normal plotting techniques for indicating significant factors and interactions and for estimating errors in experiments with only a limited number of observations was outlined,
Resumo:
This report presents the results of a comparative laboratory study between well- and gap-graded aggregates used in asphalt concrete paving mixtures. A total of 424 batches of asphalt concrete mixtures and 3,960 Marshall and Hveem specimens were examined. There is strong evidence from this investigation that, with proper combinations of aggregates and asphalts, both continuous- and gap-graded aggregates can produce mixtures of high density and of qualities meeting current design criteria. There is also reason to believe that the unqualified acceptance of some supposedly desirable, constant, mathematical relationship between adjacent particle sizes of the form such as Fuller's curve p = 100 (d/D)n is not justified. It is recommended that. the aggregate grading limits be relaxed or eliminated and that the acceptance or rejection of an aggregate for use in asphalt pavement be based on individual mixture evaluation. Furthermore, because of the potential attractiveness of gap-graded asphalt concrete in cost, quality, and skid and wear resistance, selected gap-graded mixtures are recommended for further tests both in the laboratory and in the field, especially in regard to ease of compaction and skid and wear resistance.
Resumo:
The Iowa DOT has been using the "Iowa Method" thin bonded low-slump dense Portland Cement Concrete (PCC) bridge deck overlay for rehabilitation of delaminated decks since 1963. In time, continued use of studded tires will wear away the transverse grooved texture. The objective of this research was to evaluate the benefit of incorporating a hard durable aggregate into a dense PCC overlay to provide frictional property longevity. The project included three overlays on I-35 near Ankeny. The texture and friction properties of two overlays, one constructed with crushed granite and the other with crushed quartzite coarse aggregate, were compared to an overlay constructed with locally available crushed limestone. There were no construction problems resulting from the use of crushed granite or quartzite. There was no significant frictional property benefit from the crushed granite or crushed quartzite through six years.
Resumo:
Some of Iowa's 13,200 miles of portland cement concrete (pcc) pavement have remained structurally sound for over 50 years while others have suffered premature deterioration. Research has shown that the type of coarse aggregate used in the pcc is the major cause of this premature deterioration. Some coarse aggregates for concrete exhibit a nonuniform performance history. They contribute to premature deterioration on heavily salted primary roadways while providing long maintenance-free life on unsalted secondary pavements. This inconsistency supports the premise that there are at least two mechanisms that contribute to the deterioration. Previous research has shown that one of these mechanisms is a bad pore system. The other is apparently a chemical reaction. The objective of this research is to develop simple rapid test methods to predict the durability of carbonate aggregate in pcc pavement. X-ray diffraction analyses of aggregate samples have been conducted on various beds from numerous quarries producing diffraction plots for more than 200 samples of dolomitic or dolomite aggregates. The crystalline structures of these dolomitic aggregates show maximum-intensity dolomite/ankerite peaks ranging from a d-spacing of 2.884 angstroms for good aggregates to a d-spacing of 2.914 angstroms for nondurable aggregates. If coarse aggregates with known bad pore systems are removed from this summary, the d-spacing values of the remaining aggregates correlate very well with expected service life. This may indicate that the iron substitution for magnesium in the dolomite crystal is associated with the instability of the ferroan dolomite aggregates in pcc pavement.
Resumo:
The purpose of this report is to describe the major research activities during the period of February 1, 1985 - October 30, 1986 for the Iowa Highway Research Board under the research contract entitled "Development of a Conductometric Test for Frost Resistance of Concrete." The objective of this research, as stated in the project proposal, is to develop a test method which can be reasonably rapidly performed in the laboratory and in the field to predict the behavior of concrete subjected to the action of alternate freezing and thawing with a high degree of certainty. In the work plan of the proposal it was stated that the early part of the first year would be devoted to construction of testing equipment and preparation of specimens and the remainder of the year would be devoted to the testing of specimens. It was also stated that the second and third years would be devoted to performance and refinements of tests, data analysis, preparation of suggested specifications, and performance of tests covering variables which need to be studied such as types of aggregates, fly ash replacements and other admixtures. The objective of this report is to describe the progress made during the first 20 months of this project and assess the significance of the results obtained thus far and the expected significance of the results obtainable during the third year of the project.
Resumo:
One of the most serious impediments to the continued successful use of hot mix asphalt (HMA) pavements is rutting. The Iowa Department of Transportation has required 85% crushed particles and 75 blow Marshall mix design in an effort to prevent rutting on interstate roadways. The objective of this research and report is to develop relation~hips between the percent of crushed particles and resistance to rutting in pavement through the use of various laboratory test procedures. HMA mixtures were made with 0, 30, 60, 85 and 100% crushed gravel, crushed limestone and crushed quartzite combined with uncrushed sand and gravel. These aggregate combinations were used with 4, 5 and 6% asphalt cement (ac). Laboratory testing included Marshall stability, resilient modulus, indirect tensile and creep. A creep resistance factor (CRF) was developed to provide a single numeric value for creep test results. The CRF values relate well to the amount of crushed particles and the perceived resistance to rutting. The indirect tensile test is highly dependent on the ac with a small effect from the percent of crushed particles. The Marshall stability from 75 blow compaction relates well to the percent of crushed particles. The resilient modulus in some cases is highly affected by grade of ac.
Resumo:
The major objective of this research project was to use thermal analysis techniques in conjunction with x-ray analysis methods to identify and explain chemical reactions that promote aggregate related deterioration in portland cement concrete. Twenty-two different carbonate aggregate samples were subjected to a chemical testing scheme that included: • bulk chemistry (major, minor and selected trace elements) • bulk mineralogy (minor phases concentrated by acid extraction) • solid-solution in the major carbonate phases • crystallite size determinations for the major carbonate phases • a salt treatment study to evaluate the impact of deicer salts Test results from these different studies were then compared to information that had been obtained using thermogravimetric analysis techniques. Since many of the limestones and dolomites that were used in the study had extensive field service records it was possible to correlate many of the variables with service life. The results of this study have indicated that thermogravimetric analysis can play an important role in categorizing carbonate aggregates. In fact, with modern automated thermal analysis systems it should be possible to utilize such methods on a quality control basis. Strong correlations were found between several of the variables that were monitored in this study. In fact, several of the variables exhibited significant correlations to concrete service life. When the full data set was utilized (n = 18), the significant correlations to service life can be summarized as follows ( a = 5% level): • Correlation coefficient, r, = -0.73 for premature TG loss versus service life. • Correlation coefficient, r, = 0.74 for relative crystallite size versus service life. • Correlation coefficient, r, = 0.53 for ASTM C666 durability factor versus service life. • Correlation coefficient, r, = -0.52 for acid-insoluble residue versus service life. Separation of the carbonate aggregates into their mineralogical categories (i.e., calcites and dolomites) tended to increase the correlation coefficients for some specific variables (r sometimes approached 0.90); however, the reliability of such correlations was questionable because of the small number of samples that were present in this study.
Resumo:
Safety is an important aspect of highway design. Texture and frictional properties are important characteristics in providing safe roadways. Longevity of desirable frictional properties is highly dependent on the aggregate within asphalt pavement. Iowa unfortunately has areas of the State where the locally available aggregate will not give long lasting desirable frictional properties. Iowa has utilized sprinkle treatments to improve the safety of many new asphalt concrete pavements.