956 resultados para Roads and highways
Resumo:
Stream degradation due to steep stream gradients and large deposits of loess soil is a serious problem in western Iowa. One solution to this problem is to construct grade stabilization structures at critical points along the length of the stream. Iowa Highway Research Board project HR-236, "Pottawattamie County Evaluation of Control Structures for Stabilizing Degrading Stream Channels", was initiated in order to study the effectiveness of such structures in preventing stream degradation. This report describes the construction and 4-year performance of a gabion drop structure constructed along Keg Creek during the winter of 1982-83.
Resumo:
The Iowa counties have been successful in maintaining a good roadway environment on our 90,000 mile secondary road system. However, county highway personnel must remain vigilant in detecting, discovering and correcting potential problems if our roads are to remain so. This presentation was developed for those county personnel who work and travel on secondary roads. The presentation discusses things county personnel can look for during their daily operations which could possibly create a potential problem. If these situations are uncovered and corrected in a timely manner, our secondary road system will be maintained in an appropriate manner.
Resumo:
The use of a thin bonded concrete overlay atop an older surface has been widely incorporated for pavement rehabilitation in Iowa since the early 70's. Two test sections were constructed in 1985 on county road T61 on the Monroe-Wapello County line without the use of grout as a bonding agent to determine if adequate bond could be achieved and structural capacity uncompromised. Both test sections have performed well with one section having higher bond strengths, lower roughness values, higher structural capacity, and less debonding at the joints than the other section. Overall, both ungrouted sections have performed well under substantial truck traffic with minimal surface distress. More attention should be given, however, to rectifying apparent debonding at the joints when no grout is used as a bonding agent.
Resumo:
Since integral abutment bridges decrease the initial and maintenance costs of bridges, they provide an attractive alternative for bridge designers. The objective of this project is to develop rational and experimentally verified design recommendations for these bridges. Field testing consisted of instrumenting two bridges in Iowa to monitor air and bridge temperatures, bridge displacements, and pile strains. Core samples were also collected to determine coefficients of thermal expansion for the two bridges. Design values for the coefficient of thermal expansion of concrete are recommended, as well as revised temperature ranges for the deck and girders of steel and concrete bridges. A girder extension model is developed to predict the longitudinal bridge displacements caused by changing bridge temperatures. Abutment rotations and passive soil pressures behind the abutment were neglected. The model is subdivided into segments that have uniform temperatures, coefficients of expansion, and moduli of elasticity. Weak axis pile strains were predicted using a fixed-head model. The pile is idealized as an equivalent cantilever with a length determined by the surrounding soil conditions and pile properties. Both the girder extension model and the fixed-head model are conservative for design purposes. A longitudinal frame model is developed to account for abutment rotations. The frame model better predicts both the longitudinal displacement and weak axis pile strains than do the simpler models. A lateral frame model is presented to predict the lateral motion of skewed bridges and the associated strong axis pile strains. Full passive soil pressure is assumed on the abutment face. Two alternatives for the pile design are presented. Alternative One is the more conservative and includes thermally induced stresses. Alternative Two neglects thermally induced stresses but allows for the partial formation of plastic hinges (inelastic redistribution of forces). Ductility criteria are presented for this alternative. Both alternatives are illustrated in a design example.
Resumo:
This document contains a discussion of the reasons why the project did not succeed. A detailed discussion of the steps taken by the Iowa Department of Transportation to make the experiment work are contained in this document, along with recommendations for future projects.
Resumo:
The objective of this research project was to evaluate the construction and service performance of ammonium phosphate/fly ash (APFA) treated base courses of crushed fines and/or unprocessed sand. Specific test results related to construction of the test sections were included in the 1987 construction report by Iowa State University. The performance of the experimental sections is dealt with in this final report. This 1986 project demonstrated that in all cases the control sections utilizing a Type B base experienced dramatically less cracking in the surface than the APFA treated base sections. The cost per mix and subsequent surface maintenance costs for the APFA base sections, especially those having a substantial amount of limestone, were higher than the Type B base control sections. This type of construction may prove to be economical only when petroleum product costs escalate.
Resumo:
The use of abrasives in winter maintenance is a well-established practice. The sand or other abrasive is intended to increase friction between vehicles and the (often snow or ice covered) pavement. In many agencies (and in many Iowa Counties, the focus of this study) the use of sand is a standard part of winter maintenance. Yet very little information exists on the value of sanding as a winter maintenance procedure. Some studies suggest that friction gains from sanding are minimal. In addition, there are increasing environmental concerns about sanding. These concerns focus on air quality and stormwater quality issues. This report reviews the state of the practice of abrasive usage in Iowa Counties, and classifies that usage according to its effectiveness. Possible changes in practice (with respect to abrasive usage) are presented and discussed.
Resumo:
The first phase of a two-phase research project was conducted to develop guidelines for Iowa transportation officials on the use of thin maintenance surfaces (TMS) for asphaltic concrete and bituminous roads. Thin maintenance surfaces are seal coats (chip seals), slurry seals, and micro-surfacing. Interim guidelines were developed to provide guidance on which roads are good candidates for TMS, when TMS should be placed, and what type of thin maintenance surface should be selected. The guidelines were developed specifically for Iowa aggregates, weather, traffic conditions, road user expectations, and transportation official expectations. In addition to interim guidelines, this report presents recommendations for phase-two research. It is recommended that test section monitoring continue and that further investigations be conducted regarding thin maintenance surface aggregate, additional test sections, placed, and a design method adopted for seal coats.
Resumo:
In recent years there has been renewed interest in using preventive maintenance techniques to extend pavement life and to ensure low life cycle costs for our road infrastructure network. Thin maintenance surfaces can be an important part of a preventive maintenance program for asphalt cement concrete roads. The Iowa Highway Research Board has sponsored Phase Two of this research project to demonstrate the use of thin maintenance surfaces in Iowa and to develop guidelines for thin maintenance surface uses that are specific to Iowa. This report documents the results of test section construction and monitoring started in Phase One and continued in Phase Two. The report provides a recommended seal coat design process based on the McLeod method and guidance on seal coat aggregates and binders. An update on the use of local aggregates for micro-surfacing in Iowa is included. Winter maintenance guidelines for thin maintenance surfaces are reported herein. Finally, Phase One's interim, qualitative thin maintenance surface guidelines are supplemented with Phase two's revised, quantitative guidelines. When thin maintenance surfaces are properly selected and applied, they can improve the pavement surface condition index and the skid resistance of pavements. For success to occur, several requirements must be met, including proper material selection, design, application rate, workmanship, and material compatibility, as well as favorable weather during application and curing. Specific guidance and recommendations for many types of thin maintenance surfaces and conditions are included in the report.
Resumo:
Weekly letting report.
Resumo:
List of Bid Proposal Holders
Resumo:
Extensive programmed laboratory tests involving some 400 asphalt emulsion slurry seals (AESS) were conducted. Thirteen aggregates including nine Iowa sources, a quartzite, a synthetic aggregate (Haydite), a limestone stone from Nebraska, and a Chat aggregate from Kansas were tested in combination with four emulsions and two mineral fillers, resulting in a total of 40 material combinations. A number of meetings were held with the Iowa DOT engineers and 12 state highway departments that have had successful slurry seal experiences and records, and several slurry seal contractors and material and equipment suppliers were contacted. Asphalt emulsion slurry seal development, uses, characteristics, tests, and design methods were thoroughly reviewed in conjunction with Iowa's experiences through these meetings and discussions and through a literature search (covering some 140 articles and 12 state highway department specifications). It was found that, while asphalt emulsion slurry seals (when properly designed and constructed) can economically improve the quality and extend the life of existing pavement surface, experiences with them had been mixed due to the many material, slurry, and construction variables that affect their design, construction, and performance. The report discusses those variables identified during the course of the project and makes recommendations concerning design procedures, design criteria, specifications and the means of evaluating them.
Resumo:
This research was initiated to identify methods of reducing the occurrence of transverse cracking. Eight (four repetitive) research sections were established to study three variations in the asphalt concrete pavement. The first variation was the comparison of low- and high-temperature-susceptible asphalt cement (AC) from two different sources. The second variable was to saw and seal transverse joints at spacings varying from 40 to 100 ft. The third variable was to increase the AC content in the asphalt treated base by 1 percent. The research sections were constructed with relatively few problems. Crack and joint surveys have been conducted on all research sections at intervals of less than 1 year since construction. No cracking was identified after the first winter season. The sawed joints also remained sealed through the first winter. At an age of approximately 1 1/2 years there was substantial cracking of the high-temperature-susceptible AC sections and substantial failure of the sealant material in the sawed joints. After almost 4 years, the asphalt pavement constructed with the high-temperature-susceptible AC produced a crack interval of 35 ft, the low-temperature-susceptible AC yielded an interval of 170 ft, and the low-temperature-susceptible AC with an increased AC content yielded an interval of 528 ft. The Pen-Vis number is an effective measure of temperature susceptibility of asphalt cements. The frequency of transverse cracking is affected by the temperature susceptibility of the AC. An increased AC content also reduces the frequency of transverse cracking.
Resumo:
Provides instructions for using the computer program which was developed under the research project, "The Economics of Reducing the County Road System: Three Case Studies In Iowa". This program operates on an IBP personal computer with 300K storage. A fixed disk is required with at least 3 megabytes of storage. The computer must be equipped with DOS version 3.0; the programs are written in Fortran. The user's manual describes all data requirements including network preparation, trip information, cost for maintenance, reconstruction, etc. Program operation instructions are presented, as well as sample solution output and a listing of the computer programs.
Resumo:
The Iowa Department of Transportation is responsible for maintaining approximately 3800 bridges throughout the State. Of these bridges approximately 3200 have concrete decks. The remaining bridges have been constructed or repaired with a Portland Cement (P. C.) concrete overlay. Surveys of the overlays have indicated a growing incidence of delaminations and surface distress. The need to replace or repair the overlay may be dictated by the amount of delamination in the deck. Additionally, the concrete bridges are periodically inspected and scheduled for the appropriate rehabilitation. Part of this analysis is an assessment of the amount of delamination present in the deck. The ability to accurately and economically identify delamination in overlays and bridge decks is necessary to cost-effectively evaluate and schedule bridge rehabilitation. There are two conventional methods currently being used to detect delaminations. One is ref erred to as a chain drag method. The other a electro-mechanical sounding method (delamtect). In the chain drag method, the concrete surface is struck using a heavy chain. The inspector then listens to the sound produced as the surface is struck. The delaminated areas produce a dull sound as compared to nondelaminated areas. This procedure has proved to be very time consuming, especially when a number of small areas of delamination are present. With the · electro-mechanical method, the judgement of the inspector has been eliminated. A· device with three basic components, a tapping device, a sonic receiver, and a system of signal interpretation has been developed. This· device is wheeled along the deck and the instrument receives and interprets the acoustic signals generated by the instrument which in turn are reflected through the concrete. A recently developed method of detecting delaminations is infrared thermography. This method of detection is based on the difference in surface temperature which exists between delaminated and nondelaminated concrete under certain atmospheric conditions. The temperature difference can reach 5°C on a very sunny day where dry pavement exists. If clouds are present, or the pavement is wet, then the temperature difference between the delaminated and nondelaminated concrete will not be as great and therefore more difficult to detect. Infrared thermography was used to detect delaminations in 17 concrete bridge decks, 2 P. C. concrete overlays, and 1 section of continuously reinforced concrete pavement (CRCP) in Iowa. Thermography was selected to assess the accuracy, dependability, and potential of the infrared thermographic technique.