91 resultados para Residential burglary
Resumo:
River Action is requesting funds for a project that offers design, technical and financial assistance to residential and commercial landowners and municipalities for the installation of buffers along Duck Creek and its tributaries. The buffers will improve water quality, reduce erosion on stream banks and provide habitat for wildlife. The projects will be planned and implemented through public meetings and educational workshops. This method of community involvement will increase awareness and education concerning the impairments in Duck Creek in Davenport and Bettendorf in Scott County, Iowa and promote personal responsibility and stewardship of watersheds.
Resumo:
This issue review provides fiscal year 2009 city taxable value, tax rate and property tax revenue statistics, with comparisons to FY 2008 and to FY 2001. A discussion of the impact of the residential rollback on the tax base of cities and the growth in tax increment financing, or TIF, is also included.
Resumo:
Plagued for nearly a century by the perennial flooding of Indian Creek, the City begins construction on a massive channelization project designed to confine the creek to its banks. Funded largely through a grant from the recently established Public Works Administration (PWA), the Indian Creek Channel, upon its completion two years later, would become the largest PWA undertaking in the State of Iowa. Though it did not completely end flooding in Council Bluffs, construction of the Indian Creek Channel did substantially reduce both the number and severity of the city's subsequent floods. It also profoundly impacted the residential and commercial development of Council Bluffs, as well as the city's sanitary conditions. The effects of the Indian Creek channelization, both practical and historical, are still realized today. In 2009, plans for a City road and bridge construction project at the intersection of North Broadway Street and Kanesville Boulevard proposed to replace a 221-foot-long segment of the Indian Creek Channel with a concrete box culvert. In compliance with the National Historic Preservation Act, a cultural resources study was conducted at the proposed construction site, the findings of which concluded that the historic character of the Indian Creek Channel would be compromised by the impending construction. As a means of mitigating these damages, an agreement was reached among the City, the Iowa State Historic Preservation Office, and the Federal Highway Administration that resulted in detailed research and documentation of the historical significance of the Indian Creek Channel. The findings of that study are summarized in this publication.
Resumo:
The relationship between Iowa’s roads and drainage developed when rural roads were originally constructed. The land parallel to roadways was excavated to create road embankments. The resulting ditches provided an outlet for shallow tiles to drain nearby fields for farming. Iowa’s climate and terrain are nearly ideal for farming, and more than 90 percent of the land suits the purpose. Much of the land, however, needs to be artificially drained to achieve maximum productivity. Most of this drainage has been accomplished with an extensive network of levees, open ditches, and underground tiles. The U.S. Census Bureau estimated that as early as 1920 approximately nine million acres of Iowa farm land had been artificially drained or needed to be. Couple this drainage system with Iowa’s extensive surface transportation system—approximately 100,000 miles of roads and streets, 90,000 on local systems— and potential for conflicts will naturally arise. This is particularly true with urban expansion resulting in residential and commercial development of rural land. This manual contains summaries of and references to the laws most relevant to drainage in Iowa. It also includes frequently asked questions about transportation agencies’ responsibilities related to drainage. Typical policies and agreement forms used by agencies to address drainage issues are illustrated and a glossary of common terms is included.
Resumo:
Many cities in Iowa have retained the original brick street surfaces in downtown areas and in older residential areas as the base for modern driving surfaces. The original brick surfaces were not built to handle current and future traffic loadings. In recent years, these surfaces have tended to shift and become uneven, creating problems with safety. Asphaltic concrete overlays have been the typical rehabilitation technique in these situations. This has proven to be a successful rehabilitation technique in some cases; in other cases, the combination of movement of the brick and flexibility of the asphalt has proven to accentuate the original problems. Most of the existing literature on rehabilitation of brick streets shows the use of asphaltic concrete. Other rehabilitation methods include reconstruction of the brick surface and strengthening of the surface by placing asphaltic concrete or portland cement concrete, along with sand, underneath the brick layers. To date, little if anything has been done in the area of using portland cement concrete as an overlay of the brick surfaces. This final report documents the planning, construction, and performance of unbonded ultrathin whitetopping rehabilitation of a brick street in Oskaloosa, Iowa, in 2001. It also reports on a similar project in Des Moines that was constructed two years later in 2003.
Resumo:
The proposed action consists of upgrading Mississippi Drive (Iowa Highway 92) through downtown Muscatine, Iowa. The Mississippi Drive Corridor Project begins south of the Main Street/Grandview Avenue intersection, continuing to the East 2nd Street/Norbert F. Beckey Bridge intersection, which marks the end of the project. It passes through a mix of commercial, residential, Central Business District and industrial land uses. The total length of the project is approximately 1.6 miles, including 19 intersections (6 with traffic signals). Refer to the vicinity map on Figure 1. The current roadway is a 3- to 4-lane, urban facility with both divided and undivided medians. The roadway, ranging from 40 to 64 feet wide, is considered difficult to cross for pedestrians, especially for small children or elderly. The width of this roadway is being considered to be narrowed to improve the accessibility to the downtown from the Mississippi River riverfront area by pedestrians. This project also includes accommodations for bicycles and pedestrians and measures to reduce flooding on the roadway.
Resumo:
The Duck Creek watershed has been the target study area of multiple reports by multiple agencies including a 2009 DNR Watershed Master Planning Grant, and the 2011 Duck and Blackhawk Creek Stream Assessment. The information obtained from these reports has lead the City of Davenport to take a micro-watershed approach to identifying the significant contributors to flooding and water quality issues that affect Duck Creek, its tributaries and the surrounding landscape, and devise solutions to mitigate these concerns. The construction of the proposed Littig Area Detention Basin comes as a recommendation from the Comprehensive Stormwater Management Plan for Pheasant, Goose, and Silver Creeks as prepared by James M. Montgomery, Consulting Engineers, Inc. in September 1991. At the time this report was prepared this basin was one of eight regional detention basins proposed in the upstream watersheds to alleviate flooding on tributaries to Duck Creek. The basin is designed and situated to detain runoff from approximately two hundred and twenty-seven (227) acres of previously developed moderate density residential area with intermixed light business and schools. This basin will reduce flow rates entering the receiving waters from the two, five and ten year storm events by an average of eighty-five percent (85%) and reduce flow rates from the twenty-five, fifty, and one hundred year events by a11 average of fifty percent (50%). With this flow rate reduction it is anticipated that streambank erosion in the immediate downstream receiving waters can be reduced or even stopped. The reduction in sediment leaving this upstream area will greatly enhance the water quality further downstream in Goose and Duck Creeks.
Resumo:
The Iowa Department of Public Health (IDPH) has been asked by several citizens of Clinton, Iowa to evaluate potential health effects from exposure to benzene from an above ground tank located near a residential area. The above ground tank is managed by Equistar Chemicals, LP (Equistar) and is use to store pyrolysis gasoline prior to off-loading onto barges. The IDPH in cooperation with the Agency for Toxic Substances and Disease Registry (ATSDR) prepared this health consultation to review the air quality monitoring provided by Equistar and provide an evaluation of the health effects from exposure to benzene at the levels detected in ambient air near the tank. The information in this health consultation was current at the time of writing. Data that emerges later could alter this document’s conclusions and recommendations.
Resumo:
Leisure Lake is approximately a 67 acre water body located in northwest Jackson County with a 2,681 acre drainage area. The watershed including the lake is a tributary to Lytle Creek which drains into the North Fork of the Maquoketa River. Portions of the Lytle Creek and North Fork Maquoketa River are on the 303(d) impaired waterbodies list. The project area includes a community of 370 residential properties and one business that currently has no central wastewater collection and treatment system. The purpose of this project is to construct a wastewater collection and treatment facility to improve water quality in the creek and river. The project will eliminate the non-permitted septic systems and construct a new wastewater system to properly treat wastewater prior to its discharge into the waterways.
Resumo:
Upper Catfish Creek is located in a 9,300-acre watershed that flows through two significant natural resources, Swiss Valley Park and Swiss Valley Nature Preserves, one of the largest nature preserves in the Midwest. According to DNR’s 2002 305(d) report, that portion of the creek within the park and preserve is classified as a Class B(CW) cold water stream of which a portion has naturally reproducing trout (one of only 30 in the state of Iowa with this capability). Urban sprawl is a real threat to the Upper Catfish Creek Watershed. Currently, 10% of the watershed is residential, but 27% is zoned residential or commercial. The watershed is near Dubuque city limits but the jurisdiction is in the county. Differing criteria for land development between city and county jurisdictions further entices developers to build in outlying areas. County leaders agree there is more that needs to be done and will work with municipalities on uniformity of regulations and follow-up measures. We propose to set up key urban conservation practice models that will address storm water runoff and water quality which can be learned about and viewed by city and county officials, engineers, developers, etc. This would be part of a larger initiative including an educational campaign, inter-jurisdictional planning, the development of a land use GIS database, and agricultural conservation practices. The successes coming out of and learned about this watershed will serve as a model to spread county-wide.
Resumo:
The Iowa Department of Natural Resources (IDNR) has requested the Iowa Department of Public Health (IDPH) Hazardous Waste Site Health Assessment Program to evaluate the potential health impacts of the future development at the Buchanan Bulk Oil – Ma & Pa Stores site. A Targeted Brownfields Assessment was completed by the IDNR at this site to measure existing on-site contaminants. Assistance was sought from the IDPH to determine potential health risks if the site was developed for residential use. This health consultation addresses potential health risks to people from exposure to the contaminants found in the soil and groundwater within the property boundary. The information in this health consultation was current at the time of writing. Data that emerges later could alter this document’s conclusions and recommendations.
Resumo:
This project will include the construction of four separate drainage and retention facilities to handle urban runoff that currently flows directly into Lake Storm Lake. These facilities will filter storm water from approximately 503 acres of urban land including two large industrial users Tyson Fresh Meats and Sara Lee Turkey Processing as well as other commercial and residential sections that currently go directly to the lake without filtration. Specifically the project involves the construction of a two cell dry bottomed detention pond system, construction of two rain gardens/bio retention areas, construction of rain gardens along storm water intakes on Highway 7, and construction of a porous rock detention area. The completed project will provide for cleaner water outleting to the fake in an area that has the largest potential for pollutants to enter the lake. This project is being done in conjunction with other watershed improvements including two additional rain gardens already in place and a multi-year dredging effort of Lake Storm Lake that will be starting its fifth year in 2006. Improvements in the rural water shed are also taking place with the help of a watershed coordinator. Some of these projects include buffer strips and filter slips along the waterways in the watershed.
Resumo:
The purpose of this project is to develop a management plan to address the City of Alta’s stormwater runoff. Currently, there is no management plan and the city is growing, so there are increased runoff problems from both residential and industrial sources. A large assortment of pollutants flow from these areas, examples include various forms of sediment, paper, plastic, gravel and metal as well as less visible potentially toxic pollution from lawns, streets, gas stations and other commercial and industrial areas. The goal for this project is to construct two infiltration/detention basins to protect water quality and reduce the peak volume of the City of Alta’s urban runoff. Each basin is designed with two functions: Control gully erosion and surface erosion with detention, while incorporating water quality through infiltration. The downstream erosion control provided by detaining runoff will reduce sediment delivery to Powell Creek and protect downstream agricultural land from urban runoff. The infiltration features designed into the basins will capture pollutants commonly associated with urban stormwater runoff such as: sediment, sand, gravel hydrocarbons, particulate matter, heavy metals, and nutrients.
Resumo:
Brief Project Summary (no greater than this space allows): Leisure Lake is a 20 acre water body located in northwest Jackson County with a 2,581 acre drainage area. This portion of the Maquoketa Watershed including the lake is a tributary to Lytle Creek which drains into the North Fork Maquoketa River and into the Maquoketa Watershed. Portions of the Lytle Creek and North Fork Maquoketa River are on the 303(d) impaired waterbodies list. The project area includes a community of 370 residential properties and one business that currently has no central waste water collection and treatment system. The County Sanitarian estimates at least 225 of these properties do not have properly operating septic systems and ultimately drain their wastewater into the lake. The purpose of this project is to construct a wastewater collection and treatment facility to improve water quality in the creek and river. The project will eliminate the non-permitted septic systems and construct a new wastewater system to properly treat wastewater prior to its discharge into the waterways.
Resumo:
Many cities in Iowa have retained the original brick street surfaces in downtown areas and in older residential areas as the base for modern driving surfaces. The original brick surfaces were not built to handle current and future traffic loadings. In recent years, these surfaces have tended to shift and become uneven, creating problems with safety. Asphaltic concrete overlays have been the typical rehabilitation technique in these situations. This has proven to be a successful rehabilitation technique in some cases; in other cases, the combination of movement of the brick and flexibility of the asphalt has proven to accentuate the original problems. Most of the existing literature on rehabilitation of brick streets shows the use of asphaltic concrete. Other rehabilitation methods include reconstruction of the brick surface and strengthening of the surface by placing asphaltic concrete or portland cement concrete, along with sand, underneath the brick layers. To date, little if anything has been done in the area of using portland cement concrete as an overlay of the brick surfaces. This final report documents the planning, construction, and performance of unbonded ultrathin whitetopping rehabilitation of a brick street in Oskaloosa, Iowa, in 2001. It also reports on a similar project in Des Moines that was constructed two years later in 2003.