83 resultados para Open clusters and associations: general
Resumo:
A Bulletin on Iowa Open Meetings and Public Records Laws By Attorney General Tom Miller
Resumo:
A Bulletin on Iowa Open Meetings and Public Records Laws By Attorney General Tom Miller
Resumo:
The 82nd General Assembly of the Iowa legislature, in Section 26 of Senate File 2420, required the Iowa Department of Transportation (Iowa DOT) to conduct an analysis of TIME-21 funding. Specifically the legislation requires the following: “The department of transportation shall conduct an analysis of the additional revenues necessary to provide at least two hundred million dollars annually to the TIME-21 fund by FY 2011-2012. The analysis shall include but is not limited to the amount of excise tax levied on motor fuel and adjustments that might be made to various fees collected by the department in order to create an appropriate balance of taxes and fees paid by Iowa drivers and out-of-state drivers. The department shall submit a report to the governor and the general assembly on or before December 31, 2008, regarding its analysis.” As a starting point to this analysis, a reassessment of long-range needs and revenues (including the estimated $200 million most critical annual unmet needs) was made. This was done by assessing changing trends in roadway conditions, revenue and construction costs since the original Study of Iowa’s Current Road Use Tax Funds (RUTF) and Future Road Maintenance and Construction Needs was completed December 2006.
Resumo:
The 82nd General Assembly of the Iowa legislature, in Section 26 of Senate File 2420, required the Iowa Department of Transportation (Iowa DOT) to conduct an analysis of TIME-21 funding. Specifically the legislation requires the following: “The department of transportation shall conduct an analysis of the additional revenues necessary to provide at least two hundred million dollars annually to the TIME-21 fund by FY 2011-2012. The analysis shall include but is not limited to the amount of excise tax levied on motor fuel and adjustments that might be made to various fees collected by the department in order to create an appropriate balance of taxes and fees paid by Iowa drivers and out-of-state drivers. The department shall submit a report to the governor and the general assembly on or before December 31, 2008, regarding its analysis.” As a starting point to this analysis, a reassessment of long-range needs and revenues (including the estimated $200 million most critical annual unmet needs) was made. This was done by assessing changing trends in roadway conditions, revenue and construction costs since the original Study of Iowa’s Current Road Use Tax Funds (RUTF) and Future Road Maintenance and Construction Needs was completed December 2006.
Resumo:
A previous study sponsored by the Smart Work Zone Deployment Initiative, “Feasibility of Visualization and Simulation Applications to Improve Work Zone Safety and Mobility,” demonstrated the feasibility of combining readily available, inexpensive software programs, such as SketchUp and Google Earth, with standard two-dimensional civil engineering design programs, such as MicroStation, to create animations of construction work zones. The animations reflect changes in work zone configurations as the project progresses, representing an opportunity to visually present complex information to drivers, construction workers, agency personnel, and the general public. The purpose of this study is to continue the work from the previous study to determine the added value and resource demands created by including more complex data, specifically traffic volume, movement, and vehicle type. This report describes the changes that were made to the simulation, including incorporating additional data and converting the simulation from a desktop application to a web application.
Resumo:
Six subject areas prompted the broad field of inquiry of this mission-oriented dust control and surface improvement project for unpaved roads: • DUST--Hundreds of thousands of tons of dust are created annually by vehicles on Iowa's 70,000 miles of unpaved roads and streets. Such dust is often regarded as a nuisance by Iowa's highway engineers. • REGULATIONS--Establishment of "fugitive dust" regulations by the Iowa DEQ in 1971 has created debates, conferences, legal opinions, financial responsibilities, and limited compromises regarding "reasonable precaution" and "ordinary travel," both terms being undefined judgment factors. • THE PUBLIC--Increased awareness by the public that regulations regarding dust do in fact exist creates a discord of telephone calls, petitions, and increasing numbers of legal citations. Both engineers and politicians are frustrated into allowing either the courts or regulatory agencies to resolve what is basically a professional engineering responsibility. • COST--Economics seldom appear as a tenet of regulatory strategies, and in the case of "fugitive dust," four-way struggles often occur between the highway professions, political bodies, regulatory agencies, and the general public as to who is responsible, what can be done, how much it will cost, or why it wasn't done yesterday. • CONFUSION--The engineer lacks authority, and guidelines and specifications to design and construct a low-cost surf acing system are nebulous, i.e., construct something between the present crushed stone/gravel surface and a high-type pavement. • SOLUTION--The engineer must demonstrate that dust control and surface improvement may be engineered at a reasonable cost to the public, so that a higher degree of regulatory responsibility can be vested in engineering solutions.
Resumo:
This report is concerned with the prediction of the long-time creep and shrinkage behavior of concrete. It is divided into three main areas. l. The development of general prediction methods that can be used by a design engineer when specific experimental data are not available. 2. The development of prediction methods based on experimental data. These methods take advantage of equations developed in item l, and can be used to accurately predict creep and shrinkage after only 28 days of data collection. 3. Experimental verification of items l and 2, and the development of specific prediction equations for four sand-lightweight aggregate concretes tested in the experimental program. The general prediction equations and methods are developed in Chapter II. Standard Equations to estimate the creep of normal weight concrete (Eq. 9), sand-lightweight concrete (Eq. 12), and lightweight concrete (Eq. 15) are recommended. These equations are developed for standard conditions (see Sec. 2. 1) and correction factors required to convert creep coefficients obtained from equations 9, 12, and 15 to valid predictions for other conditions are given in Equations 17 through 23. The correction factors are shown graphically in Figs. 6 through 13. Similar equations and methods are developed for the prediction of the shrinkage of moist cured normal weight concrete (Eq. 30}, moist cured sand-lightweight concrete (Eq. 33}, and moist cured lightweight concrete (Eq. 36). For steam cured concrete the equations are Eq. 42 for normal weight concrete, and Eq. 45 for lightweight concrete. Correction factors are given in Equations 47 through 52 and Figs., 18 through 24. Chapter III summarizes and illustrates, by examples, the prediction methods developed in Chapter II. Chapters IV and V describe an experimental program in which specific prediction equations are developed for concretes made with Haydite manufactured by Hydraulic Press Brick Co. (Eqs. 53 and 54}, Haydite manufactured by Buildex Inc. (Eqs. 55 and 56), Haydite manufactured by The Cater-Waters Corp. (Eqs. 57 and 58}, and Idealite manufactured by Idealite Co. (Eqs. 59 and 60). General prediction equations are also developed from the data obtained in the experimental program (Eqs. 61 and 62) and are compared to similar equations developed in Chapter II. Creep and Shrinkage prediction methods based on 28 day experimental data are developed in Chapter VI. The methods are verified by comparing predicted and measured values of the long-time creep and shrinkage of specimens tested at the University of Iowa (see Chapters IV and V) and elsewhere. The accuracy obtained is shown to be superior to other similar methods available to the design engineer.
Resumo:
This report is a result of the ADPER & EH division management team retreat that was held on July 30 and 31, 2015 where a gap was identified in our communication with customers, especially when it came to sharing information about planning efforts. The purpose of this report is to provide a comprehensive look at what ADPER & EH has accomplished in the past year as well as what we are working on for the future. It also serves as an annual informational resource for stakeholders, local partners, policy makers and the general public.