80 resultados para Locally Produced Foods
Resumo:
Mulch helps to recreate the organic layer and soil structure of a wooded environment, which benefits your trees and shrubs... • Helps maintain even soil temperature in the roots by keeping them cool in the summer and warm in the winter. • Promotes plant growth. • Controls weeds. • Conserves soil moisture, meaning you use less water. • Improves soil structure and quality over the root area. • Protects from mechanical damage (mowers, string trimmers, etc.) • Helps beautify the new planting.
Resumo:
Mixture proportioning is routinely a matter of using a recipe based on a previously produced concrete, rather than adjusting the proportions based on the needs of the mixture and the locally available materials. As budgets grow tighter and increasing attention is being paid to sustainability metrics, greater attention is beginning to be focused on making mixtures that are more efficient in their usage of materials yet do not compromise engineering performance. Therefore, a performance-based mixture proportioning method is needed to provide the desired concrete properties for a given project specification. The proposed method should be user friendly, easy to apply in practice, and flexible in terms of allowing a wide range of material selection. The objective of this study is to further develop an innovative performance-based mixture proportioning method by analyzing the relationships between the selected mix characteristics and their corresponding effects on tested properties. The proposed method will provide step-by-step instructions to guide the selection of required aggregate and paste systems based on the performance requirements. Although the provided guidance in this report is primarily for concrete pavements, the same approach can be applied to other concrete applications as well.
Resumo:
The use of High Performance Concrete (HPC) in Iowa has consisted of achieving slightly higher compressive strengths with an emphasis on reduced permeability. Concrete with reduced permeability has increased durability by slowing moisture and chloride ingress. Achieving reduced permeability has typically been accomplished with combinations of slag and Class C fly ash, or the use of blended cements such as locally available Type IS(20), IS(25) and Type IP(25) in conjunction with Class C fly ash. Fly ash has been used in the majority of concrete placed in Iowa since 1984 and slag has been available in Iowa since 1995. During the economic downturn in 2008, one of the cement plants that produced a Type IS(25) cement was forced to shut down, which reduced the availability of blended cements, typically used on HPC deck overlays. Recently, a source of high reactivity metakaolin has been made available. Metakaolin is produced by heating a pure kaolinite clay to 650 to 700 °C in a rotary kiln (calcining). Metakaolin is a white pozzolan that is used to produce concrete with increased strengths, reduced permeability, reduced efflorescence, and resistance to alkali silica reactivity. The W.R. Grace MK-100 metakaolin will likely be available in dissolvable bags between 25 and 50 pounds. Thus, the mix designs were based on the anticipated bag size range for field use. This research evaluated metakaolin mixes with and without Class C fly ash. Results indicated a seven percent replacement with metakaolin produced concrete with increased strengths and low permeability. When used with Class C fly ash, permeability is reduced to very low rating. Metakaolin may be used to enhance hardened concrete properties for use in high performance concrete (HPC).
Resumo:
The Mechanistic-Empirical Pavement Design Guide (MEPDG) was developed under National Cooperative Highway Research Program (NCHRP) Project 1-37A as a novel mechanistic-empirical procedure for the analysis and design of pavements. The MEPDG was subsequently supported by AASHTO’s DARWin-ME and most recently marketed as AASHTOWare Pavement ME Design software as of February 2013. Although the core design process and computational engine have remained the same over the years, some enhancements to the pavement performance prediction models have been implemented along with other documented changes as the MEPDG transitioned to AASHTOWare Pavement ME Design software. Preliminary studies were carried out to determine possible differences between AASHTOWare Pavement ME Design, MEPDG (version 1.1), and DARWin-ME (version 1.1) performance predictions for new jointed plain concrete pavement (JPCP), new hot mix asphalt (HMA), and HMA over JPCP systems. Differences were indeed observed between the pavement performance predictions produced by these different software versions. Further investigation was needed to verify these differences and to evaluate whether identified local calibration factors from the latest MEPDG (version 1.1) were acceptable for use with the latest version (version 2.1.24) of AASHTOWare Pavement ME Design at the time this research was conducted. Therefore, the primary objective of this research was to examine AASHTOWare Pavement ME Design performance predictions using previously identified MEPDG calibration factors (through InTrans Project 11-401) and, if needed, refine the local calibration coefficients of AASHTOWare Pavement ME Design pavement performance predictions for Iowa pavement systems using linear and nonlinear optimization procedures. A total of 130 representative sections across Iowa consisting of JPCP, new HMA, and HMA over JPCP sections were used. The local calibration results of AASHTOWare Pavement ME Design are presented and compared with national and locally calibrated MEPDG models.
Resumo:
This project was undertaken to study the relationships between the performance of locally available asphalts and their physicochemical properties under Iowa conditions with the ultimate objective of development of a locally and performance-based asphalt specification for durable pavements. Physical and physicochemical tests were performed on three sets of asphalt samples including: (a) twelve samples from local asphalt suppliers and their TFOT residues, (b) six core samples of known service records, and (c) a total of 79 asphalts from 10 pavement projects including original, lab aged and recovered asphalts from field mixes, as well as from lab aged mixes. Tests included standard rheological tests, HP-GPC and TMA. Some specific viscoelastic tests (at 5 deg C) were run on b samples and on some a samples. DSC and X-ray diffraction studies were performed on a and b samples. Furthermore, NMR techniques were applied to some a, b and c samples. Efforts were made to identify physicochemical properties which are correlated to physical properties known to affect field performance. The significant physicochemical parameters were used as a basis for an improved performance-based trial specification for Iowa to ensure more durable pavements.