94 resultados para Kuluttajavalituslautakunnan täysistuntoratkaisuja 1991-1995
Resumo:
Following is the Operations Manual for the Pennsylvania Ave Bridge over I-235 located in Des Moines, Iowa, which was installed from July 1992 to October 1992. The project uses ELGARD™ 210 Anode Mesh and is divided into 3 zones. Periodic data collection and/or inspection of the cathodic protection system is required to insure proper operation and a long life. This Operation Manual contains a schedule, operation procedures, operation log forms, a rectifier panel drawing, and pertinent reference matenal. Operation procedures and operating records are contained in the body of the manual, while blank operation forms, as built drawings, and pertinent reference material are contained in the appendices.
Resumo:
In recent years, the nighttime wet pavement retroreflectivity of pavement markings has become an important issue. In a effort to continue research in this area, the Iowa Department of Transportation evaluated the effectiveness of Visibeads in the Des Moines metropolitan area. Visibeads are three to four times larger in diameter then conventional glass beads. This larger size provides for better retroreflectivity under nighttime wet pavement conditions. The areas chosen for evaluation do not have roadway lighting, therefore, making them a good choice for Visibeads. Although the DOT has tested Visibeads in the past with moderate success, it is believed that using Visibeads with longer life markings such as epoxy will improve their performance.
Resumo:
In 1992, the Iowa DOT installed 6200 snowplowable Raised Pavement Markers (RPM) in six areas around the state. They were evaluated at six-month intervals until the replacement of the reflective lenses in 1995. During this time, the RPM performed well. The Iowa Department of Transportation uses de-icers and sand during the winter to control snow and ice on the pavement. The sand and the chemicals reduced the reflectivity of the reflectors. With minimum or no maintenance the visibility of the RPM is low. Although the RPM appear to present a problem during snow plowing, they are an excellent device for lane delineation at night in adverse weather.
Resumo:
This final report contains two separate reports which describe the retroreflectivity levels of various traffic signs and pavement markings on the Iowa primary road system. The data was collected in the fall/winter of 1994 and given to the Federal Highway Administration in March of 1995. This information is currently being combined with similar information from other jurisdictions across the country for the purpose of determining the impact of mandated minimum retroreflectivity levels. The FHWA will be releasing their report sometime in 1996. In October 1992, Congress mandated (Public Law 102-388) the Secretary of Transportation to revise the Manual of Uniform Traffic Control Devices to include a minimum level of retroreflectivity for pavement markings and traffic signs which shall apply to all roads open to public travel. In 1994, the FHWA initiated research studies to determine the retroreflectivity levels which currently exist for signs and markings in an attempt to develop standards which are reasonable to implement. The Iowa Department of Transportation participated in both of the studies and the final reports are included. After compilation and analysis of the collected retroreflectivity data, the FHWA will propose the new MUTCD standards through the federal rule making process. It is estimated that the actual MUTCD change will occur sometime in late 1997 or early 1998.
Resumo:
The Falling Weight Deflectometer (FWD) has become the "standard" for deflection testing of pavements. Iowa has used a Road Rater since 1976 to obtain deflection information. A correlation between the Road Rater and the FWD was needed if Iowa was going to continue with the Road Rater. Comparative deflection testing was done using a Road Rater Model 400 and a Pynatest 8000 FWD on 26 pavement sections. The SHRP contractor, Braun Intertec Pavement, Inc., provided the FWD testing. The r^2 for the linear correlations ranged from 0.90 to 0.99 for the different pavement types and sensor locations.
Resumo:
The effect of curing temperature, in the range of 4.4 to 22.8 degrees C (40 to 73 degrees F), on strength development was studied based on the maturity and pulse velocity measurements in this report. The strength-maturity relationships for various mixes using a Type I cement and using a Type IP cement, respectively, were experimentally developed. The similar curves for early age strength development of both the patching concrete, using a Type I cement with the addition of calcium chloride, and the fast track concrete, using a Type III cement and fly ash, have also been proposed. For the temperature ranges studied, the strength development of concrete can be determined using a pulse velocity measurement, but only for early ages up to 24 hours. These obtained relationships can be used to determine when a pavement can be opened to traffic. The amount of fly ash substitution, up to 30%, did not have a significant influence on the strength-maturity relationship.
Resumo:
Identify processes to modify in order to reduce snow plow accidents. Reviewed all [Iowa] D.O.T. snow plow accidents that occurred in calendar years 1992 and 1993.
Resumo:
Water-surface-elevation profiles and peak discharges for the floods of July 12, 1972, March 19, 1979, and June 15, 1991, in the Turkey River Basin, northeast Iowa, are presented in this report. The profiles illustrate the 1979 and 1991 floods along the Turkey River in Fayette and Clayton Counties and along the Volga River in Clayton County; the 1991 flood along Roberts Creek in Clayton County and along Otter Creek in Fayette County; and the 1972 flood along the Turkey River in Winneshiek and Fayette Counties. Watersurface elevations for the flood of March 19, 1979, were collected by the Iowa Natural Resources Council. The June 15, 1991, flood on the Turkey River at Garber (station number 05412500) is the largest known flood-peak discharge at the streamflow-gaging station for the period 1902-95. The peak discharge for June 15, 1991, of 49,900 cubic feet per second was 1.4 times larger than the 100-year recurrence-interval discharge. The report provides information on flood stages and discharges and floodflow frequencies for streamflow-gaging stations in the Turkey River Basin using flood information collected during 1902-95. Information on temporary bench marks and reference points established in the Turkey River Basin during 1981, 1992, and 1996 also is included in the report. A flood history describes rainfall conditions for floods that occurred during 1922, 1947, 1972, 1979, and 1991.
Resumo:
This summary of legislation enacted by the General Assembly has been prepared for the use of legislators and other interested parties. The summary of each legislative enactment has been assigned to a major subject category. This compilation provides interested persons with quick reference to legislation enacted in specific areas and generally informs persons of the contents and effective date of the legislation. NOTE: This is a large file and may take a few minutes to load.
Resumo:
This summary of legislation enacted by the General Assembly has been prepared for the use of legislators and other interested parties. The summary of each legislative enactment has been assigned to a major subject category. This compilation provides interested persons with quick reference to legislation enacted in specific areas and generally informs persons of the contents and effective date of the legislation. NOTE: This is a large file and may take a few minutes to load.
Resumo:
Flood-elevation profiles and flood-peak discharges for floods during 1972, 1982, and 1987 in the Nishnabotna River basin are given in the report. The profiles are for the 1972 flood on the West and East Nishnabotna Rivers, the 1982 flood on Indian Creek, and the 1987 flood on the lower West Nishnabotna River. A flood history describes rainfall conditions and reported damages for floods occurring 1947, 1958, 1972, 1982, and 1987. Discharge for the 1982 flood on Indian Creek is 1.1 times larger than the 100-year recurrence interval discharge.
Resumo:
This booklet is a compilation of notes taken during motor grader operators workshops held at some 20 different locations throughout Iowa during the last two years. It is also the advice of 16 experienced motor grader operators and maintenance foremen (from 14 different counties around Iowa), who serve as instructors and assistant instructors at the "MoGo" workshops. The instructors have all said that they learn as much from the operators who attend the workshops as they impart. Motor grader operators from throughout Iowa have shown us new, innovative and better ways of maintaining gravel roads. This booklet is an attempt to pass on some of these "tips" that we have gathered from Iowa operators. It will need to be revised, corrected, and added to based on the advice we get from you, the operators who do the work here in Iowa.
Resumo:
The major objective of this research project is to investigate the chemistry and morphology of Portland cement concrete pavements in Iowa. The integrity of the various pavements is being ascertained based on the presence or absence of microcracks, the presence or absence of sulfate minerals, and the presence or absence of alkali-silica gel(s). Work is also being done on quantifying the air content of the concrete using image analysis techniques since this often appears to be directly related to the sulfate minerals that are commonly observed in the pavement cores.