149 resultados para Bridge rectifiers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ten bridges were chosen to have their concrete barrier rails constructed with one rail having "Fibermesh" synthetic fibers added and the other rail without the fibers. The rails were constructed in 1985, 1986, or 1987. All the bridges were inspected in 1988 and no consistent reduction in cracking was achieved using Fibermesh fibers in the p.c. concrete bridge barrier rails.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The penetration of chloride ions from deicing salts into the portland cement concrete of bridge decks can cause corrosion and serious damage to the reinforcing steel. Concrete properties which prevent chloride penetration into the bridge deck and provide a good structural and economic wearing surface are desirable. A variety of mix designs have been tried in the past in search of improved performance and lower costs for bridge deck overlay concrete. A group of mixes with various designs have been tested in this project and results are being compared to determine which concrete mix appears to be the most cost effective and resistant to chloride penetration for bridge deck overlay use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to an equipment malfunction, too much sand was used in the concrete on the bridge floor placed on August 9, 1994, in Washington County, Project No. BRF-22-2(36)38-92. Freeze-thaw durability testing of cores taken from the concrete in question and the other two concretes not in question was performed. The experimental results indicate that the concrete in question is considered at least as durable and resistant to freeze-thaw damage as the concretes which are not in question. The concrete in question can be expected to function properly for the regular service life of the bridge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project continues the research which addresses the numerous bridge problems on the Iowa secondary road system. It is a continuation (Phase 2) of Project HR-382, in which two replacement alternatives (Concept 1: Steel Beam Precast Units and Concept 2: Modification of the Benton County Beam-in-Slab Bridge) were investigated. In previous research for concept 1, a precast unit bridge was developed through laboratory testing. The steel-beam precast unit bridge requires the fabrication of precast double-tee (PCDT) units, each consisting of two steel beams connected by a reinforced concrete deck. The weight of each PCDT unit is minimized by limiting the deck thickness to 4 in., which permits the units to be constructed off-site and then transported to the bridge site. The number of units required is a function of the width of bridge desired. Once the PCDT units are connected, a cast-in-place reinforced concrete deck is cast over the PCDT units and the bridge railing attached. Since the steel beam PCDT unit bridge design is intended primarily for use on low-volume roads, used steel beams can be utilized for a significant cost savings. In previous research for concept 2, an alternate shear connector (ASC) was developed and subjected to static loading. In this investigation, the ASC was subjected to cyclic loading in both pushout specimens and composite beam tests. Based on these tests, the fatigue strength of the ASC was determined to be significantly greater than that required in typical low volume road single span bridges. Based upon the construction and service load testing, the steel-beam precast unit bridge was successfully shown to be a viable low volume road bridge alternative. The construction process utilized standard methods resulting in a simple system that can be completed with a limited staff. Results from the service load tests indicated adequate strength for all legal loads. An inspection of the bridge one year after its construction revealed no change in the bridge's performance. Each of the systems previously described are relatively easy to construct. Use of the ASC rather than the welded studs significantly simplified the work, equipment, and materials required to develop composite action between the steel beams and the concrete deck.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of a high range water reducer in bridge floors was initiated by an Iowa Highway Research Board project (HR-192) in 1977 for two basic reasons. One was to determine the feasibility of using a high range water reducer (HRWR) in bridge floor concrete using conventional concrete proportioning, transporting and finishing equipment. The second was to determine the performance and protective qualities against chloride intrusion of a dense concrete bridge floor by de-icing agents used on Iowa's highways during winter months. This project was basically intended to overcome some problems that developed in the original research project. The problems alluded to are the time limits from batching to finishing; use of a different type of finishing machine; need for supplemental vibration on the surface of the concrete during the screeding operation and difficulty of texturing. The use of a double oscillating screed finishing machine worked well and supplemental vibration on one of the screeds was not needed. The limit of 45 minutes from batching the concrete to placement on the deck was verified. This is a maximum when the HRWR is introduced at the batch plant. The problem of texturing was not solved completely but is similar to our problems on the dense "Iowa System" overlay used on bridge deck repair projects. This project reinforced some earlier doubts about using truck transit mixers for mixing and transporting concrete containing HRWR when introduced at the batch plant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the results of the static and dynamic testing of a three-span continuous I-beam highway bridge. Live load stress frequency curves for selected points are shown, and the static and dynamic load distribution to the longitudinal composite beam members are given. The bridge has four traffic lanes with a roadway width of 48 ft. Six longitudinal continuous WF beams act compositely with the reinforced concrete slab to carry the live load. The beams have partial length cover plates at the piers. Previous research has indicated that beams with partial length cover plates have a very low fatigue strength. It was found in this research that the magnitude of the stresses due to actual highway loads were very much smaller than those computed from specification loading. Also, the larger stresses which were measured occurred a relatively small number of times. These data indicate that some requirements for reduced allowable stresses at the ends of cover plates are too conservative. The load distribution to the longitudinal beams was determined for static and moving loads and includes the effect of impact on the distribution. The effective composite section was found at various locations to evaluate the load distribution data. The composite action was in negative as well as positive moment regions. The load distribution data indicate that the lateral distribution of live load is consistent with the specifications, but that there is longitudinal distribution, and therefore the specifications are too conservative.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the main problems of bridge maintenance in Iowa is the spalling and scaling of the decks. This problem stems from the continued use of deicing salts during the winter months. Since bridges will frost or freeze more often than roadways, the use of deicing salts on bridges is more frequent. The salt which is spread onto the bridge dissolves in water and permeates into the concrete deck. When the salt reaches the depth of the reinforcing steel and the concentration at that depth reaches the threshold concentration for corrosion (1.5 lbs./yd. 3 ), the steel will begin to oxidize. The oxidizing steel must then expand within the concrete. This expansion eventually forces undersurface fractures and spalls in the concrete. The spalling increases maintenance problems on bridges and in some cases has forced resurfacing after only a few years of service. There are two possible solutions to this problem. One solution is discontinuing the use of salts as the deicing agent on bridges and the other is preventing the salt from reaching or attacking the reinforcing steel. This report deals with one method which stops the salt from reaching the reinforcing steel. The method utilizes a waterproof membrane on the surface of a bridge deck. The waterproof membrane stops the water-salt solution from entering the concrete so the salt cannot reach the reinforcing steel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chloride-ions penetrating into bridge decks and corroding the steel have been a major problem. As the steel corrodes it exerts stresses on the surrounding concrete. When the stresses exceed the strength of the concrete, cracks or delaminations occur. This, of course, causes deterioration and spalling of bridge deck surfaces. Both the Latex and Iowa Method were used to repair bridge decks for this project. The concrete was removed down to the steel and replaced with approximately 1 1/2 inches of low slump or latex modified concrete. The removal of unsound concrete below the top layer of steel was sometimes necessary. The objective of this project was to determine if the bridge overlays would provide a cost effective method of rehabilitation. To do this, unsound and delaminated concrete was removed and replaced by an overlay of low slump or latex modified concrete.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fly ash was used in this evaluation study to replace 15% of the cement in Class D-57 structural concrete containing ASTM C494 Type B, retarding admixtures. Two Class "C" ashes and one Class "F" ash from Iowa approved sources were examined in each mix. When Class "C" ashes were used, they were substituted on the basis of 1.0 pound for each pound of cement removed. When Class "F" ash was used, it was substituted on the basis of 1.25 pounds of ash for each pound of cement removed. Compressive strengths of the retarded mixes, with and without fly ash, were determined at 7, 28 and 56 days of age. In most cases, with few exceptions, the mixes containing the fly ash exhibited higher strengths than the same concrete mix without the fly ash. The exceptions were the 7, 28, and 56 days of the mixes containing Class F ash. The freeze/thaw durability of the concrete studied was not affected by the presence of fly ash. The data obtained suggested that the present Class D-57 structural concrete mix with retarding admixtures can be modified to allow the substitution of 15% of the cement with an approved fly ash when Class III coarse aggregates are used. Setting times of the concretes were not materially changed due to the incorporation of fly ash.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design of satisfactory supporting and expansion devices for highway bridges is a problem which has concerned bridge design engineers for many years. The problems associated with these devices have been emphasized by the large number of short span bridges required by the current expanded highway program of expressways and interstate highways. The initial objectives of this investigation were: (1) To review and make a field study of devices used for the support of bridge superstructures and for provision of floor expansion; (2) To analyze the forces or factors which influence the design and behavior of supporting devices and floor expansion systems; and (3) To ascertain the need for future research particularly on the problems of obtaining more economical and efficient supporting and expansion devices, and determining maximum allowable distance between such devices. The experimental portion was conducted to evaluate one of the possible simple and economical solutions to the problems observed in the initial portion. The investigation reported herein is divided into four major parts or phases as follows: (1) A review of literature; (2) A survey by questionnaire of design practice of a number of state highway departments and consulting firms; (3) Field observation of existing bridges; and, (4) An experimental comparison of the dynamic behavior of rigid and elastomeric bearings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Iowa Department of Transportation has overlaid 446 bridge decks with low slump dense concrete from 1964 through October 1978. The overall performance of these decks has been satisfactory. Nineteen bridges that were resurfaced with either low slump dense concrete (LSDC) or latex-modified concrete were analyzed for chloride content, electrical corrosion potential, delaminations or debonding, and deck surface condition. The resurfacing ages of these bridges range from 5 to 13 years. None of the bridges showed any evidence of surface distress and the chloride penetration into the resurfacing concrete is relatively low. There are delaminations in the original decks below the resurfacing on the majority of bridges examined. The delaminations are concluded to be caused by either (A) reinforcing steel corrosion, (B) not removing all delaminated concrete prior to placing the resurfacing concrete, or (C) creating an incipient fracture in the top surf ace of the original deck through the use of scarification equipment. The active corrosion of the reinforcing steel is predominately in the gutter line on the majority of bridges evaluated. Recommendations for future deck repairs include removal of concrete to the top layer of reinforcing steel in areas where an electrical corrosion potential of -0.35V or more is detected, providing more positive methods of locating delaminated concrete, and treating the curb and gutter line to reduce the potential damage from salt water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When referenced, the 2012 edition of the Iowa Department of Transportation’s (Iowa DOT) Standard Specifications for Highway and Bridge Construction shall be used for contract work awarded by the Iowa DOT. They may also be incorporated by reference in other contract work on secondary, urban, local systems, or other contract work in which the Iowa DOT has an interest. As modified by the General Supplemental Specifications, these Standard Specifications represent the minimum requirements and may be modified by Supplemental Specifications, Developmental Specifications, and Special Provisions on specific contracts. These Standard Specifications have been written so the Contractor’s responsibilities are indicated by plain language using the Imperative Mood and Active Voice form. Sentences are of the form: Construct isolation joints at all points where driveways meet other walks, curbs, or fixtures in the surface. Ensure finished members are true to detailed dimensions and free from twists, bends, open joints, or other defects resulting from faulty fabrication or defective work. Personnel preparing the JMF shall be Iowa DOT certified in bituminous mix design. The Contracting Authority’s responsibilities are (with some exceptions) indicated by the use of the modal verb “will”. Sentences are of the form: The Engineer will obtain and test density samples for each lot according to Materials I.M. 204. Payment will be the contract unit price for Fabric Reinforcement per square yard (square meter). These standard specifications contain dual units of measure: the United States Standard measure (English units) and the International System of Units (SI or “metric” units). The English units are expressed first then followed by the metric units in parentheses. The measurements expressed in the two systems are not necessarily equal. In some cases the measurements in metric units is a “hard” conversion of the English measurement; i.e. the metric unit has been approximated with a rounded, rationalized metric measurement that is easy to work with and remember. The proposal form will identify whether the work was designed and shall be constructed in English or metric units.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Rock Island Centennial Bridge spanning the Mississippi River between Rock Island, Illinois and Davenport, Iowa was opened to traffic on July 12, 1940. It is a thoroughly modern, four-lane highway bridge, adequate in every respect for present day high speed passenger and transport traffic. The structure is ideally situated to provide rapid transit between the business districts of Rock Island and Davenport and serves not only the local or shuttle traffic in the Tri-City Area, but also heavy through motor travel on U.S. Highways 67 and 150. The Centennial Bridge is notable in several respects. The main spans are box girder rib tied arches, a type rather unusual in America and permitting simplicity in design with pleasing appearance. The Centennial Bridge is the only bridge across the Mississippi providing for four lanes of traffic with separation of traffic in each direction. It is a toll bridge operating alongside a free bridge and has the lowest rates of toll of any toll bridge on the Mississippi River. It was financed entirely by the City of Rock Island with no obligation on the taxpayers; there was no federal or state participation in the financing. But perhaps the most outstanding feature of the new bridge is its great need. A few remarks on the communities served by the new structure, the services rendered, and some statistics on cross-river traffic in the Tri-City Area will emphasize the reasons for constructing the Centennial Bridge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steel reinforcing bar (rebar) corrosion due to chlorine ingress is the primary degradation mechanism for bridge decks. In areas where rock salt is used as a de-icing agent, salt water seeps into the concrete through cracks, causing corrosion of the rebar and potentially leading to catastrophic failure if not repaired. This project explores the use of radio frequency identification (RFID) tags as low-cost corrosion sensors. RFID tags, when embedded in concrete, will fail due to corrosion in the same manner as rebar after prolonged exposure to salt water. In addition, the presence of salt water interferes with the ability to detect the tags, providing a secondary mechanism by which this method can work. During this project, a fieldable RFID equipment setup was constructed and tested. In addition to a number of laboratory experiments to validate the underlying principles, RFID tags were embedded and tested in several actual bridge decks. Two major challenges were addressed in this project: issues associated with tags not functioning due to being in close proximity to rebar and issues associated with portland concrete coming in direct contact with the tags causing a detuning effect and preventing the tags from operating properly. Both issues were investigated thoroughly. The first issue was determined to be a problem only if the tags are placed in close proximity to rebar. The second issue was resolved by encapsulating the tag. Two materials, polyurethane spray foam and extruded polystyrene, were identified as providing good performance after testing, both in the lab and in the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With ever tightening budgets and limitations of demolition equipment, states are looking for cost-effective, reliable, and sustainable methods for removing concrete decks from bridges. The goal of this research was to explore such methods. The research team conducted qualitative studies through a literature review, interviews, surveys, and workshops and performed small-scale trials and push-out tests (shear strength evaluations). Interviews with bridge owners and contractors indicated that concrete deck replacement was more economical than replacing an entire superstructure under the assumption that the salvaged superstructure has adequate remaining service life and capacity. Surveys and workshops provided insight into advantages and disadvantages of deck removal methods, information that was used to guide testing. Small-scale trials explored three promising deck removal methods: hydrodemolition, chemical splitting, and peeling