80 resultados para BOND-VALENCE PARAMETERS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project involved the evaluation of several aggregates previously rated poor to excellent with respect to skid resistance and certain mix design parameters. An open graded asphalt friction course was evaluated using 4 comparably graded aggregates: quartzite, fine grained limestone, coarse limestone and lightweight expanded shale. The performance investigations involved the verification of observations of the quartzite test sections, evaluation of the effect of blending the superior quartzite with a typical coarse grained-textured limestone, and the evaluation of the limestone. The effects of traffic on the aggregates used in the test sections were studied, as well as the relationship between asphalt content levels and traffic with respect to performance. The bond of the open graded friction course mixture was also evaluated. The SN performance of all test sections after sixteen months of exposure was found to be satisfactory in that none of the material combinations had polished to the point where unacceptable SN levels developed. When material combinations were compared, significant differences were noted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In reinforced concrete systems, ensuring that a good bond between the concrete and the embedded reinforcing steel is critical to long-term structural performance. Without good bond between the two, the system simply cannot behave as intended. The bond strength of reinforcing bars is a complex interaction between localized deformations, chemical adhesion, and other factors. Coating of reinforcing bars, although sometimes debated, has been commonly found to be an effective way to delay the initiation of corrosion in reinforced concrete systems. For many years, the standard practice has been to coat reinforcing steel with an epoxy coating, which provides a barrier between the steel and the corrosive elements of water, air, and chloride ions. Recently, there has been an industry-led effort to use galvanizing to provide the protective barrier commonly provided by traditional epoxy coatings. However, as with any new structural product, questions exist regarding both the structural performance and corrosion resistance of the system. In the fall of 2013, Buchanan County, Iowa constructed a demonstration bridge in which the steel girders and all internal reinforcing steel were galvanized. The work completed in this project sought to understand the structural performance of galvanized reinforcing steel as compared to epoxy-coated steel and to initiate a long-term corrosion monitoring program. This work consisted of a series of controlled laboratory tests and the installation of a corrosion monitoring system that can be observed for years in the future. The results of this work indicate there is no appreciable difference between the bond strength of epoxy-coated reinforcing steel and galvanized reinforcing steel. Although some differences were observed, no notable difference in either peak load, slip, or failure mode could be identified. Additionally, a long-term monitoring system was installed in this Buchanan County bridge and, to date, no corrosion activity has been identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research was initiated in 1991 as a part of a whitetopping project to study the effectiveness of various techniques to enhance bond strength between a new Portland cement concrete (PCC) overlay and an existing asphalt cement concrete (ACC) pavement surface. A 1,676 m (5,500 ft) section of county road R16 in Dallas County, Iowa was divided into 12 test sections. The various techniques used to enhance bond were power brooming, power brooming with air blast, milling, cement and water grout, and emulsion tack coat. As a part of these bonding techniques, two pavement thicknesses were placed; two different concrete proportions were used; and two sections were planed to a uniform cross-slope.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Use of bridge deck overlays is important in maximizing bridge service life. Overlays can replace the deteriorated part of the deck, thus extending the bridge life. Even though overlay construction avoids the construction of a whole new bridge deck, construction still takes significant time in re-opening the bridge to traffic. Current processes and practices are time-consuming and multiple opportunities may exist to reduce overall construction time by modifying construction requirements and/or materials utilized. Reducing the construction time could have an effect on reducing the socioeconomic costs associated with bridge deck rehabilitation and the inconvenience caused to travelers. This work included three major tasks with literature review, field investigation, and laboratory testing. Overlay concrete mix used for present construction takes long curing hours and therefore an investigation was carried out to find fast-curing concrete mixes that could reduce construction time. Several fast-cuing concrete mixes were found and suggested for further evaluation. An on-going overlay construction project was observed and documented. Through these observations, several opportunities were suggested where small modifications in the process could lead to significant time savings. With current standards of the removal depth of substrate concrete in Iowa, it takes long hours for the removal process. Four different laboratory tests were performed with different loading conditions to determine the necessary substrate concrete removal depth for a proper bond between the substrate concrete and the new overlay concrete. Several parameters, such as failure load, bond stress, and stiffness, were compared for four different concrete removal depths. Through the results and observations of this investigation several conclusions were made which could reduce bridge deck overlay construction time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project was undertaken to study the relationships between the performance of locally available asphalts and their physicochemical properties under Iowa conditions with the ultimate objective of development of a locally and performance-based asphalt specification for durable pavements. Physical and physicochemical tests were performed on three sets of asphalt samples including: (a) twelve samples from local asphalt suppliers and their TFOT residues, (b) six core samples of known service records, and (c) a total of 79 asphalts from 10 pavement projects including original, lab aged and recovered asphalts from field mixes, as well as from lab aged mixes. Tests included standard rheological tests, HP-GPC and TMA. Some specific viscoelastic tests (at 5 deg C) were run on b samples and on some a samples. DSC and X-ray diffraction studies were performed on a and b samples. Furthermore, NMR techniques were applied to some a, b and c samples. Efforts were made to identify physicochemical properties which are correlated to physical properties known to affect field performance. The significant physicochemical parameters were used as a basis for an improved performance-based trial specification for Iowa to ensure more durable pavements.