71 resultados para road and bridge sector
Resumo:
The University of Iowa Office of the State Archaeologist and Team Archaeology are back on RAGBRAI for another year of Archaeology on the Road, and pleased to partner this year with the IDNR: Geological and Water Survey and the U.S. Geological Survey under the theme “Human and Natural History Partners.” Archaeology on the Road brings you the unique cultural history and prehistory of Iowa on the RAGBRAI route, pointing out interesting and significant archaeological sites and sharing Iowa’s past along the way. Look for our booth at Expo and then again on Days 1, 5 and 6 on the route, and also keep an eye out for our Team Archaeology
Resumo:
The University of Iowa Office of the State Archaeologist and Team Archaeology are back on RAGBRAI for another year of Archaeology on the Road, and pleased to partner this year with the IDNR: Geological and Water Survey and the U.S. Geological Survey under the theme “Human and Natural History Partners.” Archaeology on the Road brings you the unique cultural history and prehistory of Iowa on the RAGBRAI route, pointing out interesting and significant archaeological sites and sharing Iowa’s past along the way. Look for our booth at Expo and then again on Days 1, 5 and 6 on the route, and also keep an eye out for our Team Archaeology
Resumo:
The University of Iowa Office of the State Archaeologist and Team Archaeology are back on RAGBRAI for another year of Archaeology on the Road, and pleased to partner this year with the IDNR: Geological and Water Survey and the U.S. Geological Survey under the theme “Human and Natural History Partners.” Archaeology on the Road brings you the unique cultural history and prehistory of Iowa on the RAGBRAI route, pointing out interesting and significant archaeological sites and sharing Iowa’s past along the way. Look for our booth at Expo and then again on Days 1, 5 and 6 on the route, and also keep an eye out for our Team Archaeology.
Resumo:
The University of Iowa Office of the State Archaeologist and Team Archaeology are back on RAGBRAI for our third year of Archaeology on the Road, and pleased to partner this year with the IDNR: Geological and Water Survey and the U.S. Geological Survey under the theme “Human and Natural History Partners.” Archaeology on the Road brings you the unique cultural history and prehistory of Iowa on the RAGBRAI route, pointing out interesting and significant archaeological sites and sharing Iowa’s past along the way. Look for our booth at Expo and then again on Days 1, 5 and 6 on the route, and also keep an eye out for our Team Archaeology
Resumo:
The University of Iowa Office of the State Archaeologist and Team Archaeology are back on RAGBRAI for our third year of Archaeology on the Road, and pleased to partner this year with the IDNR: Geological and Water Survey and the U.S. Geological Survey under the theme “Human and Natural History Partners.” Archaeology on the Road brings you the unique cultural history and prehistory of Iowa on the RAGBRAI route, pointing out interesting and significant archaeological sites and sharing Iowa’s past along the way. Look for our booth at Expo and then again on Days 1, 5 and 6 on the route, and also keep an eye out for our Team Archaeology.
Resumo:
The authors have post-tensioned and monitored two Iowa bridges and have field tested the post-tensioning of a composite bridge in Florida. In order to provide the practical post-tensioning distribution factors given in this manual, the authors developed a finite element model of a composite bridge and checked the model against a one-half scale laboratory bridge and two actual composite bridges, one of which had a 45 deg skew. Following a brief discussion of this background research, this manual explains the use of elastic, composite beam and bridge section properties, the distribution fractions for symmetrically post-tensioned exterior beams, and a method for computing the strength of a post-tensioned beam. Also included is a design example for a typical, 51.25-ft (15.62-m) span, four-beam composite bridge. Moments for Iowa Department of Transportation rating trucks, H 20 and HS 20 trucks, have been tabulated for design convenience and are included in the appendix.
Resumo:
In this study, several new cutting edges for removal of ice from the roadway were tested in a series of closed road tests. These new cutting edges consisted of a variety of serrated shapes. The study also included measurement of ice scraping forces by in-service trucks. These trucks were instrumented in a similar manner as the truck used in the closed-road tests. Results from the closed-road and in-service tests were analyzed by two parameters. The first parameter is the scraping effectiveness, which is defined as the average horizontal force experienced by a cutting edge. The amount of ice scraped from the roadway is directly proportional to the magnitude of the scraping effectiveness. Thus an increase in scraping effectiveness indicates an increase in the amount of ice being scraped from the roadway. The second parameter is force angle, which is defined as tan to the -1 power [vertical force/horizontal force]. A combination of a minimal force angle and a maximized scraping effectiveness represents a case in which the maximal amount of ice is being removed from the pavement without an exceptionally large vertical force. Results indicate that each cutting edge produced a maximal scraping effectiveness with a testing configuration of a 15 deg blade angle and a 23,000 lb. download force. Results also indicate that each cutting edge produced a minimal force angle with a testing configuration of a 15 deg blade angle and a 10,000 lb. download force. Results from the in-service trucks produced similar data and also similar trends within the data when compared to the results of the closed-road tests. This result is most important, as it suggests that the closed-road tests do provide an accurate measure of ice scraping forces for a given blade and configuration of that blade. Thus if the closed-road tests indicate that certain blades perform well, there is now excellent reason to conduct full scale tests of such blades.
Resumo:
Since integral abutment bridges decrease the initial and maintenance costs of bridges, they provide an attractive alternative for bridge designers. The objective of this project is to develop rational and experimentally verified design recommendations for these bridges. Field testing consisted of instrumenting two bridges in Iowa to monitor air and bridge temperatures, bridge displacements, and pile strains. Core samples were also collected to determine coefficients of thermal expansion for the two bridges. Design values for the coefficient of thermal expansion of concrete are recommended, as well as revised temperature ranges for the deck and girders of steel and concrete bridges. A girder extension model is developed to predict the longitudinal bridge displacements caused by changing bridge temperatures. Abutment rotations and passive soil pressures behind the abutment were neglected. The model is subdivided into segments that have uniform temperatures, coefficients of expansion, and moduli of elasticity. Weak axis pile strains were predicted using a fixed-head model. The pile is idealized as an equivalent cantilever with a length determined by the surrounding soil conditions and pile properties. Both the girder extension model and the fixed-head model are conservative for design purposes. A longitudinal frame model is developed to account for abutment rotations. The frame model better predicts both the longitudinal displacement and weak axis pile strains than do the simpler models. A lateral frame model is presented to predict the lateral motion of skewed bridges and the associated strong axis pile strains. Full passive soil pressure is assumed on the abutment face. Two alternatives for the pile design are presented. Alternative One is the more conservative and includes thermally induced stresses. Alternative Two neglects thermally induced stresses but allows for the partial formation of plastic hinges (inelastic redistribution of forces). Ductility criteria are presented for this alternative. Both alternatives are illustrated in a design example.
Resumo:
This research, initiated in October 1992, was located at the intersection of Blairs Ferry Road and Lindale Drive in the City of Marion. The wall is located on the southeast corner of the intersection. Reinforced retaining wall construction started with a five inch base of roadstone with one inch of sand for leveling purposes. One and one-half to two feet of one inch clean stone was placed behind the blocks. A four inch perforated plastic pipe was placed approximately nine inches from the bottom of the one inch clean stone. The Tenswal, tensar geogrid was placed at every third layer. Openings in the Tenswal are hooked over plastic dowels in the blocks. The tenswal reaches from the face of the wall back 5' to 8'. The cost for constructing this wall was $124,400. The wall has performed well for the past five years. The wall improves the aesthetics of a high traffic volume intersection of an urban area. Many positive comments have been received by the city regarding its appearance. The City of Marion has been pleased with the wall and has used this type of wall on subsequent projects.
Resumo:
This Plan Reading Course was developed by the Department of Civil and Construction Engineering of Iowa State University under contract with the Iowa Highway Research Board, Project HR-324. It is intended to be an instructional tool for Iowa DOT, county and municipal employees within the state of Iowa. Under this contract, a previous Plan Reading Course, prepared for the Iowa State Highway Commission in 1965, has been completely revised using a new format, new plans, updated specifications, and new material. This course is a self-taught course consisting of two parts; Highway Plans, and Bridge and Culvert plans. Each part consists of a self-instruction book, a set of plans, a question booklet, and an answer booklet. This is the self-instruction book for the Bridge and Culvert Plans part of the course. The example structures included in this part of the course are a prestressed concrete beam bridge and a reinforced concrete box culvert.
Resumo:
In the past, culvert pipes were made only of corrugated metal or reinforced concrete. In recent years, several manufacturers have made pipe of lightweight plastic - for example, high density polyethylene (HDPE) - which is considered to be viscoelastic in its structural behavior. It appears that there are several highway applications in which HDPE pipe would be an economically favorable alternative. However, the newness of plastic pipe requires the evaluation of its performance, integrity, and durability; A review of the Iowa Department of Transportation Standard Specifications for Highway and Bridge Construction reveals limited information on the use of plastic pipe for state projects. The objective of this study was to review and evaluate the use of HDPE pipe in roadway applications. Structural performance, soil-structure interaction, and the sensitivity of the pipe to installation was investigated. Comprehensive computerized literature searches were undertaken to define the state-of-the-art in the design and use of HDPE pipe in highway applications. A questionnaire was developed and sent to all Iowa county engineers to learn of their use of HDPE pipe. Responses indicated that the majority of county engineers were aware of the product but were not confident in its ability to perform as well as conventional materials. Counties currently using HDPE pipe in general only use it in driveway crossings. Originally, we intended to survey states as to their usage of HDPE pipe. However, a few weeks after initiation of the project, it was learned that the Tennessee DOT was in the process of making a similar survey of state DOT's. Results of the Tennessee survey of states have been obtained and included in this report. In an effort to develop more confidence in the pipe's performance parameters, this research included laboratory tests to determine the ring and flexural stiffness of HDPE pipe provided by various manufacturers. Parallel plate tests verified all specimens were in compliance with ASTM specifications. Flexural testing revealed that pipe profile had a significant effect on the longitudinal stiffness and that strength could not be accurately predicted on the basis of diameter alone. Realizing that the soil around a buried HDPE pipe contributes to the pipe stiffness, the research team completed a limited series of tests on buried 3 ft-diameter HDPE pipe. The tests simulated the effects of truck wheel loads above the pipe and were conducted with two feet of cover. These tests indicated that the type and quality of backfill significantly influences the performance of HDPE pipe. The tests revealed that the soil envelope does significantly affect the performance of HDPE pipe in situ, and after a certain point, no additional strength is realized by increasing the quality of the backfill.