73 resultados para Railroad rails.
Resumo:
This railroad map shows Iowa rail carriers and train speeds.
Resumo:
Stream channel erosion in the deep loess soils region of western Iowa causes severe damage along hundreds of miles of streams in twenty-two counties. The goal of this project was to develop information, systems, and procedures for use in making resource allocation decisions related to the protection of transportation facilities and farmland from damages caused by stream channel erosion. Section one of this report provides an introduction. Section two presents an assessment of stream channel conditions from aerial and field reconnaissance conducted in 1993 and 1994 and a classification of the streams based on a six stage model of stream channel evolution. A Geographic Information System is discussed that has been developed to store and analyze data on the stream conditions and affected infrastructure and assist in the planning of stabilization measures. Section three presents an evaluation of two methods for predicting the extent of channel degradation. Section four presents an estimate of costs associated with damages from stream channel erosion since the time of channelization until 1992. Damage to highway bridges represent the highest costs associated with channel erosion, followed by railroad bridges and right-of-way; loss of agricultural land represents the third highest cost. An estimate of costs associated with future channel erosion on western Iowa streams is also presented in section four. Section four also presents a procedure to estimate the benefits and costs of implementing stream stabilization measures. The final section of this report, section five, presents information on the development of the organizational structure and administrative procedures which are being used to plan, coordinate, and implement stream stabilization projects and programs in western Iowa.
Resumo:
Transportation map of Iowa, updated march 1, 2014. map focuses on interstate highways, primary and secondary state roads, county roads, and scenic byways. Also includes railroad lines, airports, waterways, and locks and dams. All 99 counties are represented, as well as approximately 1,000 cities and towns. Points of interest are also marked.
Resumo:
In 1986, the Iowa DOT installed 700 feet of International Barrier Corporation (IBC) barrier between the 1-235 eastbound off ramp and the adjacent eastbound loop on ramp at 8th Street in West Des Moines. It is a 3 foot 6 inch high sand-filled galvanized sheet metal barrier. The bid price on this project was $130 per lineal foot. It was evaluated annually for four years. During this time, there have been no severe accidents where vehicles hit the barrier. There are scrapes and dents indicating minor accidents. The barrier has performed very well and required no maintenance. Due to its initial cost, the IBC barrier is not as cost-effective as portland cement concrete barrier rails.
Resumo:
Ten bridges were chosen to have their concrete barrier rails constructed with one rail having "Fibermesh" synthetic fibers added and the other rail without the fibers. The rails were constructed in 1985, 1986, or 1987. All the bridges were inspected in 1988 and no consistent reduction in cracking was achieved using Fibermesh fibers in the p.c. concrete bridge barrier rails.
Resumo:
Research was undertaken, sponsored by the Iowa Department of Transportation, to identify specific locations where rumble strips could be expected to improve highway safety. The objective of the research was to recommend warrants for their use on rural highways. An inventory of rumble strip installations on the rural highway systems in the state was conducted in 1981. A total of 685 installations was reported on secondary roads and 147 on primary highways. Over 97 percent of these were in advance of stop signs at. intersections. Most of the other installations were in advance of railroad grade crossings. The accident experience with and without rumble strips was compared in two ways. A before-and-after comparison was made for the same location if accident records were available for at least one full year both preceding and following the installation of rumble strips. Accident records for this purpose were available from a statewide computerized record system covering the period from 1977 through 1980. The accident experience at locations having rumble strips installed before 1978 was compared with a sample of comparable locations not having rumble strips.
Resumo:
For almost 75 years, the Grand Avenue Viaduct (known today as the Gordon Drive Viaduct) has been a familiar feature of Sioux City's urban landscape. With the exception of bridges over the Mississippi River, the Grand Avenue Viaduct is Iowa's longest grade separation as well as its longest bridge. For nearly a mile, from the eastern suburbs west to the central business district, the viaduct carries Gordon Drive and the city route of U.S. 20 over the Floyd River valley, which includes the remnants of the city's famed stockyards and the South Bottoms neighborhood, as well as a maze of railroad tracks and the present channel of the Floyd River. Constructed in 1937 and known simply as "The Viaduct" to local residents, the massive structure is as fundamental to Sioux City as were its stockyards just a few decades ago.
Resumo:
Many good maintenance practices are done routinely to ensure safe travel on low-volume local roads. In addition, there are many specific treatments that may go beyond the point of routine maintenance and in fact provide additional safety benefits with a relatively low price tag. The purpose of this publication is to try to assemble many of these treatments that are currently practiced in Iowa by local agencies into one, easy-to-reference handbook that not only provides some clarity to each treatment with photos and narrative, but also features references to agencies currently using that technique. Some strategies that are utilized by Iowa, other states, and are topics of research have also been included to allow the user more information about possible options. Even though some areas overlap, the strategies presented have been grouped together in the following areas: Signing and Delineation, Traffic "Calming," Pavement Marking and Rumble Strips/Stripes, Roadside and Clear Zone, Guardrail and Barriers, Lighting, Pavements and Shoulders, Intersections, Railroad Crossings, Bridges and Culverts, and Miscellaneous. The intention is to make this a “living” document, which will continue to be updated and expanded periodically as other existing practices are recognized or new practices come into being.
Resumo:
Innovative Rail Ltd. of Cedar Rapids, Iowa produced a new rail/highway crossing gate arm that shows promise in two areas: a. Minimizing arm breakage, and b. Added target value to motorists. The new gate was demonstrated to the Chicago and North Western Transportation Company, and that railroad has requested its use at two crossings on an "experimental basis" to determine if its installation provides relief in those areas. On April 18, 1986, the Department observed a test of the material under field conditions with the Transportation Company. The gate received four mid-center strikes at 5 MPH by a company truck while in the lowered position, and showed no damage. In a fifth mid-center strike at 15 MPH, the gate was visibly damaged at the connection to its raising mechanism, but continued to function though at a 5-10 degree drop. Several pictures of the gate and its saddle mechanism are shown in Appendix A of this report. Innovative Rail established distributorships in the United States and Canada, and has since gone out of business.
Resumo:
Bridge rail and approach guardrails provide safety to drivers by shielding more hazardous objects and redirecting vehicles to the roadway. However, guardrail can increase both the initial cost and maintenance cost of a bridge, while adding another object that may be struck by vehicles. Most existing low volume road (LVR) bridges in the state of Iowa are currently indicated to not possess bridge rail meeting “current acceptable standards”. The primary objective of the research summarized in this report was to provide the nations bridge and approach rail state of practice and perform a state wide crash analysis on bridge rails and approach guardrails on LVR bridges in Iowa. In support of this objective, the criteria and guidelines used by other bridge owners were investigated, non-standard and innovative bridge and approach guardrails for LVR’s were investigated, and descriptive, statistical and economical analyses were performed on a state wide crash analysis. The state wide crash analysis found the overall number of crashes at/on the more than 17,000+ inventoried and non-inventoried LVR bridges in Iowa was fewer than 350 crashes over an eight year period, representing less than 0.1% of the statewide reportable crashes. In other words, LVR bridge crashes are fairly rare events. The majority of these crashes occurred on bridges with a traffic volume less than 100 vpd and width less than 24 ft. Similarly, the majority of the LVR bridges possess similar characteristics. Crash rates were highest for bridges with lower traffic volumes, narrower widths, and negative relative bridge widths (relative bridge width is defined as: bridge width minus roadway width). Crash rate did not appear to be effected by bridge length. Statistical analysis confirmed that the frequency of vehicle crashes was higher on bridges with a lower width compared to the roadway width. The frequency of crashes appeared to not be impacted by weather conditions, but crashes may be over represented at night or in dark conditions. Statistical analysis revealed that crashes that occurred on dark roadways were more likely to result in major injury or fatality. These findings potentially highlight the importance of appropriate delineation and signing. System wide, benefit-cost (B/C) analyses yielded very low B/C ratios for statewide bridge rail improvements. This finding is consistent with the aforementioned recommendation to address specific sites where safety concerns exist.
Resumo:
Two portable Radio Frequency IDentification (RFID) systems (made by Texas Instruments and HiTAG) were developed and tested for bridge scour monitoring by the Department of Civil and Environmental Engineering at the University of Iowa (UI). Both systems consist of three similar components: 1) a passive cylindrical transponder of 2.2 cm in length (derived from transmitter/responder); 2) a low frequency reader (~134.2 kHz frequency); and 3) an antenna (of rectangular or hexagonal loop). The Texas Instruments system can only read one smart particle per time, while the HiTAG system was successfully modified here at UI by adding the anti-collision feature. The HiTAG system was equipped with four antennas and could simultaneously detect 1,000s of smart particles located in a close proximity. A computer code was written in C++ at the UI for the HiTAG system to allow simultaneous, multiple readouts of smart particles under different flow conditions. The code is written for the Windows XP operational system which has a user-friendly windows interface that provides detailed information regarding the smart particle that includes: identification number, location (orientation in x,y,z), and the instance the particle was detected.. These systems were examined within the context of this innovative research in order to identify the best suited RFID system for performing autonomous bridge scour monitoring. A comprehensive laboratory study that included 142 experimental runs and limited field testing was performed to test the code and determine the performance of each system in terms of transponder orientation, transponder housing material, maximum antenna-transponder detection distance, minimum inter-particle distance and antenna sweep angle. The two RFID systems capabilities to predict scour depth were also examined using pier models. The findings can be summarized as follows: 1) The first system (Texas Instruments) read one smart particle per time, and its effective read range was about 3ft (~1m). The second system (HiTAG) had similar detection ranges but permitted the addition of an anti-collision system to facilitate the simultaneous identification of multiple smart particles (transponders placed into marbles). Therefore, it was sought that the HiTAG system, with the anti-collision feature (or a system with similar features), would be preferable when compared to a single-read-out system for bridge scour monitoring, as the former could provide repetitive readings at multiple locations, which could help in predicting the scour-hole bathymetry along with maximum scour depth. 2) The HiTAG system provided reliable measures of the scour depth (z-direction) and the locations of the smart particles on the x-y plane within a distance of about 3ft (~1m) from the 4 antennas. A Multiplexer HTM4-I allowed the simultaneous use of four antennas for the HiTAG system. The four Hexagonal Loop antennas permitted the complete identification of the smart particles in an x, y, z orthogonal system as function of time. The HiTAG system can be also used to measure the rate of sediment movement (in kg/s or tones/hr). 3) The maximum detection distance of the antenna did not change significantly for the buried particles compared to the particles tested in the air. Thus, the low frequency RFID systems (~134.2 kHz) are appropriate for monitoring bridge scour because their waves can penetrate water and sand bodies without significant loss of their signal strength. 4) The pier model experiments in a flume with first RFID system showed that the system was able to successfully predict the maximum scour depth when the system was used with a single particle in the vicinity of pier model where scour-hole was expected. The pier model experiments with the second RFID system, performed in a sandbox, showed that system was able to successfully predict the maximum scour depth when two scour balls were used in the vicinity of the pier model where scour-hole was developed. 5) The preliminary field experiments with the second RFID system, at the Raccoon River, IA near the Railroad Bridge (located upstream of 360th street Bridge, near Booneville), showed that the RFID technology is transferable to the field. A practical method would be developed for facilitating the placement of the smart particles within the river bed. This method needs to be straightforward for the Department of Transportation (DOT) and county road working crews so it can be easily implemented at different locations. 6) Since the inception of this project, further research showed that there is significant progress in RFID technology. This includes the availability of waterproof RFID systems with passive or active transponders of detection ranges up to 60 ft (~20 m) within the water–sediment column. These systems do have anti-collision and can facilitate up to 8 powerful antennas which can significantly increase the detection range. Such systems need to be further considered and modified for performing automatic bridge scour monitoring. The knowledge gained from the two systems, including the software, needs to be adapted to the new systems.
Resumo:
Transportation map of Iowa, updated march 1, 2014. map focuses on interstate highways, primary and secondary state roads, county roads, and scenic byways. Also includes railroad lines, airports, waterways, and locks and dams. All 99 counties are represented, as well as approximately 1,000 cities and towns. Points of interest are also marked. This record contains images of both the front and the back of the map.
Resumo:
This is a study of how transportation policy can be fashioned to improve Iowa's long-term economic prospects. The research focuses on the state level and covers pricing, resource allocation, investment, and other issues that directly affect the performance of public facilities that support transportation of goods and people to and from points in Iowa. Chapter 1 is an introduction. Chapter 2 begins with an assessment of how Iowa's economy is changing, both functionally and spatially. Commuting patterns and methods of goods movement are then discussed. The purpose of this analysis is to provide a context for the exploration of transportation policy issues in subsequent chapters. In Chapter 3 a framework is established for evaluating changes in transportation policies. A working definition of economic development is given and the role of government policies in making an area more attractive to economic activity is considered. Chapter 4 analyzes public policy options for Iowa's roads and highways. These policy options are intended to help the state compete for economic activity. Chapter 5 assesses alternative investment strategies for major navigational facilities on the upper Mississippi River. Chapter 6 examines major transportation policy issues in Iowa's agricultural sector. The current magnitude of agricultural shipments and the roles of several modes are presented. After focusing on issues related to railroad competitiveness, the analysis turns to how Iowa's rural roads should be financed. The need for joint investment and pricing decisions affecting waterways, railroads, and rural roads is stressed. Chapter 7 examines the current status of freight transportation in Iowa. An assessment is made of issues related to trucking and of intermodal transportation and its potential for cost-effective shipping to and from businesses in Iowa. Chapter 8 summarizes the key findings of this study, offering ten recommendations. These recommendations relate to transportation as a means of facilitating economic development.