66 resultados para Driver Manuals.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report describes the first phase in a project to develop an electronic reference library (ERL) to help Iowa transportation officials efficiently access information in critical and heavily used documents. These documents include Standard Specifications for Bridge and Highway Construction (hereinafter called Standard Specifications), design manuals, standard drawings, the Construction Manual, and Material Instruction Memoranda (hereinafter called Material IMs). Additional items that could be included to enhance the ERL include phone books, letting dates, Internet links, computer programs distributed by the Iowa Department of Transportation (DOT), and local specifications, such as the Urban Standard Specifications of Public Improvements. All cross-references should be hyper linked, and a search engine should be provided. Revisions noted in the General Supplemental Specifications (hereinafter called the Supplemental Specifications) should be incorporated into the text of the Standard Specifications. The Standard Specifications should refer to related sections of other documents, and there should be reciprocal hyper links in those other documents. These features would speed research on critical issues and save staff time. A master plan and a pilot version were both developed in this first phase of the ERL.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Part 6 of the Manual on Uniform Traffic Control Devices (MUTCD) describes several types of channelizing devices that can be used to warn road users and guide them through work zones; these devices include cones, tubular markers, vertical panels, drums, barricades, and temporary raised islands. On higher speed/volume roadways, drums and/or vertical panels have been popular choices in many states, due to their formidable appearance and the enhanced visibility they provide when compared to standard cones. However, due to their larger size, drums also require more effort and storage space to transport, deploy and retrieve. Recent editions of the MUTCD have introduced new devices for channelizing; specifically of interest for this study is a taller (>36 inches) but thinner cone. While this new device does not offer a comparable target value to that of drums, the new devices are significantly larger than standard cones and they offer improved stability as well. In addition, these devices are more easily deployed and stored than drums and they cost less. Further, for applications previously using both drums and tall cones, the use of tall cones only provides the ability for delivery and setup by a single vehicle. An investigation of the effectiveness of the new channelizing devices provides a reference for states to use in selecting appropriate traffic control for high speed, high volume applications, especially for short term or limited duration exposures. This study includes a synthesis of common practices by state DOTs, as well as daytime and nighttime field observations of driver reactions using video detection equipment. The results of this study are promising for the day and night performance of the new tall cones, comparing favorably to the performance of drums when used for channelizing in tapers. The evaluation showed no statistical difference in merge distance and location, shy distance, or operating speed in either daytime or nighttime conditions. The study should provide a valuable resource for state DOTs to utilize in selecting the most effective channelizing device for use on high speed/high volume roadways where timely merging by drivers is critical to safety and mobility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The No Passing Zone sign (Wl0-4) was designed in 1958 for the purpose of informing the driver contemplating a passing maneuver of hazardous sight conditions ahead. This warning sign, of pennent shape design, was placed on the left side of the road so as to be more conspicuous to the intended driver. During the two year period 1959-1960, the Wl0-4 signs were erected throughout the Iowa Primary Road System.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report is compiled from data gathered by interviewing motorists to sample their opinion of Iowa's method of supplementing the yellow barrier line pavement marking of no passing zones on primary highways with yellow pennant shaped "No Passing Zone" signs mounted on the left shoulder of the highway. The effective designation of no passing zones is one form of control that can contribute to a reduction in the number of fatal high-speed head-on collisions resulting from passing in areas which do not afford sufficient sight distance of approaching traffic. It is the purpose of this report to present an evaluation of the Iowa "No Passing Zone" sign by individuals from all states who have traveled on Iowa's primary highways and who must obey the no passing zone restrictions and be warned by this sign of the presence of the zones. The "No Passing Zone" sign was formulated and approved by the Governor's Safety Committee a short time prior to the experimental erection of the signs. The Governor's Safety Committee adopted this sign as they felt that such a sign should be distinctive (not similar to any other type of sign) and easily visible to a driver attempting a passing maneuver.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To support the analysis of driver behavior at rural freeway work zone lane closure merge points, Center for Transportation Research and Education staff collected traffic data at merge areas using video image processing technology. The collection of data and the calculation of the capacity of lane closures are reported in a companion report, "Traffic Management Strategies for Merge Areas in Rural Interstate Work Zones". These data are used in the work reported in this document and are used to calibrate a microscopic simulation model of a typical, Iowa rural freeway lane closure. The model developed is a high fidelity computer simulation with an animation interface. It simulates traffic operations at a work zone lane closure. This model enables traffic engineers to visually demonstrate the forecasted delay that is likely to result when freeway reconstruction makes it necessary to close freeway lanes. Further, the model is also sensitive to variations in driver behavior and is used to test the impact of slow moving vehicles and other driver behaviors. This report consists of two parts. The first part describes the development of the work zone simulation model. The simulation analysis is calibrated and verified through data collected at a work zone in Interstate Highway 80 in Scott County, Iowa. The second part is a user's manual for the simulation model, which is provided to assist users with its set up and operation. No prior computer programming skills are required to use the simulation model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Iowa Department of Transportation, like many other state transportation agencies, is experiencing growing congestion and traffic delays in work zones on rural interstate highways. The congestion results in unproductive and wasteful delays for both motorists and commercial vehicles. It also results in hazardous conditions where vehicle stopped in queues on rural interstate highways are being approached by vehicles upstream at very high speeds. The delays also result in driver frustration, making some drivers willing to take unsafe risks in an effort to bypass delays. To reduce the safety hazards and unproductive delays of congested rural interstate work zones, the Iowa Department of Transportation would like to improve its traffic management strategies at these locations. Applying better management practices requires knowledge of the traffic flow properties and driver behavior in and around work zones, and knowledge of possible management strategies. The project reported here and in a companion report documents research which seeks to better understand traffic flow behavior at rural interstate highway work zones and to estimate the traffic carrying capacity of work zone lane closures. In addition, this document also reports on technology available to better manage traffic in and around work zones.