70 resultados para ALTERNATING-SIGN MATRICES
Resumo:
This report is on state-of-the-art research efforts specific to infrastructure inventory/data collection with sign inventory as a case study. The development of an agency-wide sign inventory is based on feature inventory and location information. Specific to location, a quick and simple location acquisition tool is critical to tying assets to an accurate location-referencing system. This research effort provides a contrast between legacy referencing systems (route and milepost) and global positioning system- (GPS-) based techniques (latitude and longitude) integrated into a geographic information system (GIS) database. A summary comparison of field accuracies using a variety of consumer grade devices is also provided. This research, and the data collection tools developed, are critical in supporting the Iowa Department of Transportation (DOT) Statewide Sign Management System development effort. For the last two years, a Task Force has embarked on a comprehensive effort to develop a sign management system to improve sign quality, as well as to manage all aspects of signage, from request, ordering, fabricating, installing, maintaining, and ultimately removing, and to provide the ability to budget for these key assets on a statewide basis. This effort supported the development of a sign inventory tool and is the beginning of the development of a sign management system to support the Iowa DOT efforts in the consistent, cost effective, and objective decision making process when it comes to signs and their maintenance.
Resumo:
Newsletter produced by Deaf Services Commission of Iowa
Resumo:
Newsletter produced by Deaf Services Commission of Iowa
Resumo:
Newsletter produced by Deaf Services Commission of Iowa
Resumo:
The main objective of the proposed study is to use Computational Fluid Dynamics (CFD) tools to determine the wind loads by accurate numerical simulations of air flow characteristics around large highway sign structures under severe wind speeds conditions. Fully three-dimensional Reynolds- Averaged Navier-Stokes (RANS) simulations are used to estimate the total force on different panels, as well as the actual pressure distribution on the front and back faces of the panels. In particular, the present study investigates the effects of aspect ratio and sign spacing for regular panels, the effect of sign depth for the dynamic message signs that are now being used on Iowa highways, the effect induced by the presence of back-to-back signs, the effect of the presence of add-on exit signs, and the effect of the presence of trucks underneath the signs potentially creating “wind tunnel” effect.
Resumo:
Newsletter produced by Deaf Services Commission of Iowa
Resumo:
Newsletter produced by Deaf Services Commission of Iowa
Resumo:
Newsletter produced by Deaf Services Commission of Iowa
Resumo:
Vehicle-pedestrian crashes are a major concern for highway safety analysts. Research reported by Hunter in 1996 indicated that one-third of the 5,000 vehicle-pedestrian crashes investigated occurred at intersections, and 40 percent of those were at non-controlled intersections (Hunter et al. 1996). Numerous strategies have been implemented in an effort to reduce these accidents, including overhead signs, flashing warning beacons, wider and brighter markings on the street, and advanced crossing signs. More recently, pedestrian-activated, in-street flashing lights at the crosswalk and pedestrian crossing signs in the traffic lane have been investigated. Not all of these strategies are recognized as accepted practices and included in the Manual on Uniform Traffic Control Devices (MUTCD), but the Federal Highway Administration (FHWA) is supportive of experimental applications that may lead to effective technology that helps reduce crashes.
Resumo:
The No Passing Zone sign (Wl0-4) was designed in 1958 for the purpose of informing the driver contemplating a passing maneuver of hazardous sight conditions ahead. This warning sign, of pennent shape design, was placed on the left side of the road so as to be more conspicuous to the intended driver. During the two year period 1959-1960, the Wl0-4 signs were erected throughout the Iowa Primary Road System.