59 resultados para performance-based engineering
Resumo:
The Iowa Medicaid Enterprise (IME) is an endeavor, started in 2005, to unite State staff with “best of breed” contractors into a performance-based model for administration of the Medicaid program.
Resumo:
The Iowa Medicaid Enterprise (IME) is an endeavor, started in 2005, to unite State staff with “best of breed” contractors into a performance-based model for administration of the Medicaid program.
Resumo:
The primary goal of the Hewitt Creek watershed council is to have Hewitt-Hickory Creek removed from the Iowa impaired waters (303d) list. Hewitt Creek watershed, a livestock dense 23,005 acre sub-watershed of the Maquoketa River Basin, is 91.2% agricultural and 7.5% woodland. Since 2005, sixty-seven percent of 84 watershed farm operations participated in an organized watershed improvement effort using a performance based watershed management approach, reducing annual sediment delivery to the stream by 4,000 tons. Watershed residents realize that water quality improvement efforts require a long-term commitment in order to meet their watershed improvement goals and seek funding for an additional five years to continue their successful watershed improvement project. Cooperators will be provided incentives for improved environmental performance, along with incentives and technical support to address feedlot runoff issues and sub-surface nitrate-nitrogen loss. The Phosphorus Index, Soil Conditioning Index and cornstalk nitrate test will be used by producers as measures of performance to refine nutrient and soil loss management and to determine effective alternatives to reduce nutrient and sediment delivery. Twenty-five livestock operations will improve feedlot runoff control systems and five sub-surface bioreactors will be installed to reduce nitrate delivery from priority tile-drained fields. The Hewitt Creek council will seek additional cost-share funding for high-cost feedlot runoff control structures, sediment control basins and stream bank stabilization projects.
Resumo:
The Iowa Medicaid Enterprise (IME) is an endeavor, started in 2005, to unite State staff with “best of breed” contractors into a performance-based model for administration of the Medicaid program.
Resumo:
The Iowa Medicaid Enterprise (IME) is an endeavor, started in 2005, to unite State staff with “best of breed” contractors into a performance-based model for administration of the Medicaid program.
Resumo:
The Iowa Medicaid Enterprise (IME) is an endeavor, started in 2005, to unite State staff with “best of breed” contractors into a performance-based model for administration of the Medicaid program.
Resumo:
The Iowa Medicaid Enterprise (IME) is an endeavor, started in 2005, to unite State staff with “best of breed” contractors into a performance-based model for administration of the Medicaid program.
Resumo:
Lime Creek is a sub-watershed of the Cedar River above; approximately 25 miles from Cedar Rapids. The lower half of the stream is on the Iowa 2004 Section 303(d) impaired waters list. Monitoring by the Cedar River Watershed Monitoring Coalition documents that Lime Creek delivers above average amounts of nitrate+ nitrite-N, ammonia-Nand total phosphorus (above the 901 percentile) compared to other Cedar River sub-watersheds. The Cedar Rapids water utility is concerned about increasing delivery of nitrate+nitrate to the Cedar River, which provides drinking water for about 125,000 people in the area. A group of local citizens has formed the Lime Creek watershed council with the goal of reducing pollutant delivery to the creek and promoting sustainable, watershed-wide action by producers, urban and rural residents for improved environmental management. The council has established a performance-based program that rewards cooperators for improvement in research-based test and index scores which directly measure environmental impact of BMPs. The Iowa Com Growers Association is funding the performance rewards. The Watershed Coalition is contributing in-kind monitoring. Council and performance cooperators participate primarily with commitment of their own resources. WIRB funds will be used to increase program cooperators and for staff support. In addition to improvement of water quality in Lime Creek, the project will establish baseline values for arket-based a pro ch to valuing pollutant reduction by intensive livestock operations in eastern Iowa.
Resumo:
Lower Coldwater and Palmer Creeks in Butler and Floyd counties are subwatersheds of the Cedar River, which provides drinking water to Cedar Rapids, IA. The increasing concentration of nitrate+nitrate in the river is of concern to the Cedar Rapids water utility, and IDNR snapshot monitoring shows Coldwater and Palmer to be significant potential sources (above the 90th percentile for subwatersheds monitored). Both creeks are also on the Iowa Section 303(d) list of impaired waters (aquatic life). Citizens of these predominantly agricultural watersheds organized the Coldwater-Palmer Watershed Improvement Association to deal proactively with nonpoint source pollutants from crop and livestock operations through a performance-based environmental management program. The locally-adapted program implemented by the Coldwater-Palmer watershed council rewards participants for environmental accomplishments - soil quality improvement and nutrient source reduction as measured by accepted, scientifically-based tests and models. Most of the locallyappropriate BMPs used to improve performance are undertaken voluntarily at participants' initiative. WIRB funds will be combined with funding from the Iowa Com Growers Association and significant in-kind support from the Cedar River Watershed Monitoring Coalition, Iowa State University Extension and other partners. The project will result in sustainable reduction in nutrient loading achieved with voluntary participation of a majority of watershed farm operators.
Resumo:
Standards for the construction of full-depth patching in portland cement concrete pavement usually require replacement of all deteriorated based materials with crushed stone, up to the bottom of the existing pavement layer. In an effort to reduce the time of patch construction and costs, the Iowa Department of Transportation and the Department of Civil, Construction and Environmental Engineering at Iowa State University studied the use of extra concrete depth as an option for base construction. This report compares the impact of additional concrete patching material depth on rate of strength gain, potential for early opening to traffic, patching costs, and long-term patch performance. This report also compares those characteristics in terms of early setting and standard concrete mixes. The results have the potential to change the method of Portland cement concrete pavement patch construction in Iowa.
Resumo:
Of the approximately 25,000 bridges in Iowa, 28% are classified as structurally deficient, functionally obsolete, or both. Because many Iowa bridges require repair or replacement with a relatively limited funding base, there is a need to develop new bridge materials that may lead to longer life spans and reduced life-cycle costs. In addition, new and effective methods for determining the condition of structures are needed to identify when the useful life has expired or other maintenance is needed. Due to its unique alloy blend, high-performance steel (HPS) has been shown to have improved weldability, weathering capabilities, and fracture toughness than conventional structural steels. Since the development of HPS in the mid-1990s, numerous bridges using HPS girders have been constructed, and many have been economically built. The East 12th Street Bridge, which replaced a deteriorated box girder bridge, is Iowa’s first bridge constructed using HPS girders. The new structure is a two-span bridge that crosses I-235 in Des Moines, Iowa, providing one lane of traffic in each direction. A remote, continuous, fiber-optic based structural health monitoring (SHM) system for the bridge was developed using off-the-shelf technologies. In the system, sensors strategically located on the bridge collect raw strain data and then transfer the data via wireless communication to a gateway system at a nearby secure facility. The data are integrated and converted to text files before being uploaded automatically to a website that provides live strain data and a live video stream. A data storage/processing system at the Bridge Engineering Center in Ames, Iowa, permanently stores and processes the data files. Several processes are performed to check the overall system’s operation, eliminate temperature effects from the complete strain record, compute the global behavior of the bridge, and count strain cycles at the various sensor locations.
Resumo:
The performance audit conducted by the Department of Management concerned the licensed substance abuse treatment programs in Department of Corrections’ institutions. This report uses the same methodology, modified for community-based corrections populations, to examine the delivery of substance abuse treatment for higher risk offenders under field supervision, and all offenders who were assigned to community corrections residential facilities.
Resumo:
Following high winds on January 24, 2006, at least five people claimed to have seen or felt the superstructure of the Saylorville Reservoir Bridge in central Iowa moving both vertically and laterally. Since that time, the Iowa Department of Transportation (DOT) contracted with the Bridge Engineering Center at Iowa State University to design and install a monitoring system capable of providing notification of the occurrence of subsequent high winds. Although measures were put into place following the 2006 event at the Saylorville Reservoir Bridge, knowledge of the performance of this bridge during high wind events was incomplete. Therefore, the Saylorville Reservoir Bridge was outfitted with an information management system to investigate the structural performance of the structure and the potential for safety risks. In subsequent years, given the similarities between the Saylorville and Red Rock Reservoir bridges, a similar system was added to the Red Rock Reservoir Bridge southeast of Des Moines. The monitoring system developed and installed on these two bridges was designed to monitor the wind speed and direction at the bridge and, via a cellular modem, send a text message to Iowa DOT staff when wind speeds meet a predetermined threshold. The original intent was that, once the text message is received, the bridge entrances would be closed until wind speeds diminish to safe levels.
Resumo:
This is the first report of 6 tasks to be performed in an effort to establish locally-based quality and performance criteria for asphalts, and ultimately to develop performance-related specifications based on simple physicochemical methods. Three of the most promising chemical methods (high performance liquid chromatography (HPLC), thermal analysis, and X-ray diffraction were selected to analyze 4 different types of samples. The results will indicate the fundamental asphalt property variables that directly affect the field performance in Iowa. The details of the materials and procedures employed are described, and the results of the tests are presented.