82 resultados para modified replacement cost
Resumo:
This report presents results of research on ways to reduce the detrimental effects of sulfate-tainted rock salt deicers on portland cement concrete used for highway pavements. Repetitious experiments on the influence of fly ash on the mortar phase of concrete showed significant improvement in resistance to deicing brines is possible. Fifteen to twenty percent by weight of fly ash replacement for portland cement was found to provide optimum improvement. Fly ashes from five sources were evaluated and all were found to be equally beneficial. Preliminary results indicate the type of coarse aggregate also plays an important role in terms of concrete resistance to freeze-thaw in deicing brines. This was particularly true for a porous ferroan dolomite thought to be capable of reaction with the brine. In this case fly ash improved the concrete, but not enough for satisfactory performance. An intermediate response was with a porous limestone where undesirable results were observed without fly ash and adequate performance was realized when 15% fly ash was added. The best combination for making deicer-resistant concrete was found to be with a non-porous limestone. Performance in brines was found to be adequate without fly ash, but better when fly ash was included. Consideration was given to treating existing hardened concrete made with poor aggregate and no fly ash to extend pavement life in the presence of deicers, particularly at joints. Sodium silicate was found to improve freeze-thaw resistance of mortar and is a good candidate for field usage because of its low cost and ease of handling.
Resumo:
This project continues the research which addresses the numerous bridge problems on the Iowa secondary road system. It is a continuation (Phase 2) of Project HR-382, in which two replacement alternatives (Concept 1: Steel Beam Precast Units and Concept 2: Modification of the Benton County Beam-in-Slab Bridge) were investigated. In previous research for concept 1, a precast unit bridge was developed through laboratory testing. The steel-beam precast unit bridge requires the fabrication of precast double-tee (PCDT) units, each consisting of two steel beams connected by a reinforced concrete deck. The weight of each PCDT unit is minimized by limiting the deck thickness to 4 in., which permits the units to be constructed off-site and then transported to the bridge site. The number of units required is a function of the width of bridge desired. Once the PCDT units are connected, a cast-in-place reinforced concrete deck is cast over the PCDT units and the bridge railing attached. Since the steel beam PCDT unit bridge design is intended primarily for use on low-volume roads, used steel beams can be utilized for a significant cost savings. In previous research for concept 2, an alternate shear connector (ASC) was developed and subjected to static loading. In this investigation, the ASC was subjected to cyclic loading in both pushout specimens and composite beam tests. Based on these tests, the fatigue strength of the ASC was determined to be significantly greater than that required in typical low volume road single span bridges. Based upon the construction and service load testing, the steel-beam precast unit bridge was successfully shown to be a viable low volume road bridge alternative. The construction process utilized standard methods resulting in a simple system that can be completed with a limited staff. Results from the service load tests indicated adequate strength for all legal loads. An inspection of the bridge one year after its construction revealed no change in the bridge's performance. Each of the systems previously described are relatively easy to construct. Use of the ASC rather than the welded studs significantly simplified the work, equipment, and materials required to develop composite action between the steel beams and the concrete deck.
Resumo:
Many rural communities have developed around highways or major county roads; as a result, the main street through small rural communities is often part of a high-speed rural highway. Highways and county roads are characterized by high speeds outside the city limits; they then transition into a reduced speed section through the rural community. Consequently, drivers passing through the community often enter at high speeds and maintain those speeds as they travel through the community. Traffic calming in small rural communities along major roadways is common in Europe, but the U.S. does not have experience with applying traffic-calming measures outside of major urban areas. The purpose of the project was to evaluate traffic-calming treatments on the major road through small Iowa communities using either single-measure low-cost or gateway treatments. The project was partially funded by the Iowa Highway Research Board (IHRB). The focus of the IHRB portion was to evaluate single-measure, low-cost, traffic-calming measures that are appropriate to major roads through small rural communities. Seven different low-cost traffic treatments were implemented and evaluated in five rural Iowa communities. The research evaluated the use of two gateway treatments in Union and Roland; five single-measure treatments (speed table, on-pavement “SLOW” markings, a driver speed feedback sign, tubular markers, and on-pavement entrance treatments) were evaluated in Gilbert, Slater, and Dexter.
Resumo:
This report describes the work accomplished to date on research project HR-173, A Computer Based Information System for County Equipment Cost Records, and presents the initial design for this system. The specific topics discussed here are findings from the analysis of information needs, the system specifications developed from these findings, and the proposed system design based upon the system specifications. The initial system design will include tentative input designs for capturing input data, output designs to show the output formats and the items to be output for use in decision making, file design showing the organization of information to be kept on each piece of equipment in the computer data file, and general system design explaining how the entire system will operate. The Steering Committee appointed by Iowa Highway Research Board is asked to study this report, make appropriate suggestions, and give approval to the proposed design subject to any suggestions made. This approval will permit the designer to proceed promptly with the development of the computer program implementation phase of the design.
Resumo:
This appendix is divided into three sections. The first section contains abstracts of each of the eight computer programs in the system, instructions for keypunching the three input documents, and computer operating instructions pertaining to each program. The second section contains system flowcharts for the entire system as well as program flowcharts for each program. The last section contains PL/l program listings of each program.
Resumo:
Chloride-ions penetrating into bridge decks and corroding the steel have been a major problem. As the steel corrodes it exerts stresses on the surrounding concrete. When the stresses exceed the strength of the concrete, cracks or delaminations occur. This, of course, causes deterioration and spalling of bridge deck surfaces. Both the Latex and Iowa Method were used to repair bridge decks for this project. The concrete was removed down to the steel and replaced with approximately 1 1/2 inches of low slump or latex modified concrete. The removal of unsound concrete below the top layer of steel was sometimes necessary. The objective of this project was to determine if the bridge overlays would provide a cost effective method of rehabilitation. To do this, unsound and delaminated concrete was removed and replaced by an overlay of low slump or latex modified concrete.
Resumo:
With ever tightening budgets and limitations of demolition equipment, states are looking for cost-effective, reliable, and sustainable methods for removing concrete decks from bridges. The goal of this research was to explore such methods. The research team conducted qualitative studies through a literature review, interviews, surveys, and workshops and performed small-scale trials and push-out tests (shear strength evaluations). Interviews with bridge owners and contractors indicated that concrete deck replacement was more economical than replacing an entire superstructure under the assumption that the salvaged superstructure has adequate remaining service life and capacity. Surveys and workshops provided insight into advantages and disadvantages of deck removal methods, information that was used to guide testing. Small-scale trials explored three promising deck removal methods: hydrodemolition, chemical splitting, and peeling
Resumo:
The AASHTO strategic plan in 2005 for bridge engineering identified extending the service life of bridges and accelerating bridge construction as two of the grand challenges in bridge engineering. These challenges have the objective of producing safer and more economical bridges at a faster rate with a minimum service life of 75 years and reduced maintenance cost to serve the country’s infrastructure needs. Previous studies have shown that a prefabricated full-depth precast concrete deck system is an innovative technique that accelerates the rehabilitation process of a bridge deck, extending its service life with reduced user delays and community disruptions and lowering its life-cycle costs. Previous use of ultra-high performance concrete (UHPC) for bridge applications in the United States has been considered to be efficient and economical because of its superior structural characteristics and durability properties. Full-depth UHPC waffle deck panel systems have been developed over the past three years in Europe and the United States. Subsequently, a single span, 60-ft long and 33-ft wide prototype bridge with full-depth prefabricated UHPC waffle deck panels has been designed and built for a replacement bridge in Wapello County, Iowa. The structural performance characteristics and the constructability of the UHPC waffle deck system and its critical connections were studied through an experimental program at the structural laboratory of Iowa State University (ISU). Two prefabricated full-depth UHPC waffle deck (8 feet by 9 feet 9 inches by 8 inches) panels were connected to 24-ft long precast girders, and the system was tested under service, fatigue, overload, and ultimate loads. Three months after the completion of the bridge with waffle deck system, it was load tested under live loads in February 2012. The measured strain and deflection values were within the acceptable limits, validating the structural performance of the bridge deck. Based on the laboratory test results, observations, field testing of the prototype bridge, and experience gained from the sequence of construction events such as panel fabrication and casting of transverse and longitudinal joints, a prefabricated UHPC waffle deck system is found to be a viable option to achieve the goals of the AASHTO strategic plan.
Resumo:
In coordination with a Technical Advisory Committee (TAC) consisting of County Engineers and Iowa DOT representatives, the Iowa DOT has proposed to develop a set of standards for a single span prefabricated bridge system for use on the local road system. The purpose of the bridge system is to improve bridge construction, accelerate project delivery, improve worker safety, be cost effective, reduce impacts to the travelling public by reducing traffic disruptions and the duration of detours, and allow local forces to construct the bridges. HDR Inc. was selected by the Iowa DOT to perform the initial concept screening of the bridge system. This Final Report summarizes the initial conceptual effort to investigate potential systems, make recommendations for a preferred system and propose initial details to be tested in the laboratory in Phase 2 of the project. The prefabricated bridge components were to be based on the following preliminary criteria set forth by the TAC. The criteria were to be verified and/ or modified as part of the conceptual development. - 24’ and 30’ roadway widths - Skews of 0o, 15o, and 30o - Span lengths of 30’ – 70’ in 10’ increments using precast concrete beams - Voided box beams could be considered - Limit precast element weight to 45,000 pounds for movement and placement of beams - Beams could be joined transversely with threaded rods - Abutment concepts may included precast as well as an option for cast-in-place abutments with pile foundations In addition to the above criteria, there was an interest to use a single-width prefabricated bridge component to simplify fabrication as well as a desire to utilize non-prestressed concrete systems where possible to allow for precasting of the beam modules by local forces or local precast plants. The SL-1 modular steel bridge rail was identified for use with this single span prefabricated bridge system.
Resumo:
This report is one of two products for this project with the other being a design guide. This report describes test results and comparative analysis from 16 different portland cement concrete (PCC) pavement sites on local city and county roads in Iowa. At each site the surface conditions of the pavement (i.e., crack survey) and foundation layer strength, stiffness, and hydraulic conductivity properties were documented. The field test results were used to calculate in situ parameters used in pavement design per SUDAS and AASHTO (1993) design methodologies. Overall, the results of this study demonstrate how in situ and lab testing can be used to assess the support conditions and design values for pavement foundation layers and how the measurements compare to the assumed design values. The measurements show that in Iowa, a wide range of pavement conditions and foundation layer support values exist. The calculated design input values for the test sites (modulus of subgrade reaction, coefficient of drainage, and loss of support) were found to be different than typically assumed. This finding was true for the full range of materials tested. The findings of this study support the recommendation to incorporate field testing as part of the process to field verify pavement design values and to consider the foundation as a design element in the pavement system. Recommendations are provided in the form of a simple matrix for alternative foundation treatment options if the existing foundation materials do not meet the design intent. The PCI prediction model developed from multi-variate analysis in this study demonstrated a link between pavement foundation conditions and PCI. The model analysis shows that by measuring properties of the pavement foundation, the engineer will be able to predict long term performance with higher reliability than by considering age alone. This prediction can be used as motivation to then control the engineering properties of the pavement foundation for new or re-constructed PCC pavements to achieve some desired level of performance (i.e., PCI) with time.
Resumo:
This issue review is an examination of cost-saving actions by the Department of Administrative Services, DAS, by outsourcing services. The Department has outsourced janitorial services for three buildings on the Capitol Complex and have restructured the way construction projects are managed, with the goal of producing cost savings.
Resumo:
Many good maintenance practices are done routinely to ensure safe travel on low-volume local roads. In addition, there are many specific treatments that may go beyond the point of routine maintenance and in fact provide additional safety benefits with a relatively low price tag. The purpose of this publication is to try to assemble many of these treatments that are currently practiced in Iowa by local agencies into one, easy-to-reference handbook that not only provides some clarity to each treatment with photos and narrative, but also features references to agencies currently using that technique. Some strategies that are utilized by Iowa, other states, and are topics of research have also been included to allow the user more information about possible options. Even though some areas overlap, the strategies presented have been grouped together in the following areas: Signing and Delineation, Traffic "Calming," Pavement Marking and Rumble Strips/Stripes, Roadside and Clear Zone, Guardrail and Barriers, Lighting, Pavements and Shoulders, Intersections, Railroad Crossings, Bridges and Culverts, and Miscellaneous. The intention is to make this a “living” document, which will continue to be updated and expanded periodically as other existing practices are recognized or new practices come into being.
Resumo:
This issue review provides an overview of funds dispersed for the soil and water conservation cost share program in the Department of Agriculture and Land Stewardship, DALS.
Resumo:
Most bituminous adhesives or binders that are used for pavement materials are derived primarily from fossil fuels. With petroleum oil reserves becoming depleted and the drive to establish a bio-based economy, there is a push to produce binders from alternative sources, particularly from biorenewable resources. However, until now, no research has studied the applicability of utilizing bio-oils as a bitumen replacement (100% replacement) in the pavement industry. The main objective of this research was to test various properties of bio-oils in order to determine the applicability of using bio-oils as binders in the pavement industry. The overall conclusions about the applicability of using bio-oils as bio-binders in the pavement industry can be summarized as follows: 1. Bio-oils cannot be used as bio-binders/pavement materials without any heat pre-treatment/upgrading procedure. 2. Current testing standards and specifications, especially Superpave procedures, should be modified to comply with the properties of bio-binders. 3. The temperature range of the viscous behavior for bio-oils may be lower than that of bitumen binders by about 30°–40° C. 4. The rheological properties of the unmodified bio-binders vary in comparison to bitumen binders, but the rheological properties of these modified bio-binders change significantly upon adding polymer modifiers. 5. The high-temperature performance grade for the developed bio-binders may not vary significantly from that of the bitumen binders, but the low-temperature performance grade may vary significantly
Resumo:
In the administration, planning, design, and maintenance of road systems, transportation professionals often need to choose between alternatives, justify decisions, evaluate tradeoffs, determine how much to spend, set priorities, assess how well the network meets traveler needs, and communicate the basis for their actions to others. A variety of technical guidelines, tools, and methods have been developed to help with these activities. Such work aids include design criteria guidelines, design exception analysis methods, needs studies, revenue allocation schemes, regional planning guides, designation of minimum standards, sufficiency ratings, management systems, point based systems to determine eligibility for paving, functional classification, and bridge ratings. While such tools play valuable roles, they also manifest a number of deficiencies and are poorly integrated. Design guides tell what solutions MAY be used, they aren't oriented towards helping find which one SHOULD be used. Design exception methods help justify deviation from design guide requirements but omit consideration of important factors. Resource distribution is too often based on dividing up what's available rather than helping determine how much should be spent. Point systems serve well as procedural tools but are employed primarily to justify decisions that have already been made. In addition, the tools aren't very scalable: a system level method of analysis seldom works at the project level and vice versa. In conjunction with the issues cited above, the operation and financing of the road and highway system is often the subject of criticisms that raise fundamental questions: What is the best way to determine how much money should be spent on a city or a county's road network? Is the size and quality of the rural road system appropriate? Is too much or too little money spent on road work? What parts of the system should be upgraded and in what sequence? Do truckers receive a hidden subsidy from other motorists? Do transportation professions evaluate road situations from too narrow of a perspective? In considering the issues and questions the author concluded that it would be of value if one could identify and develop a new method that would overcome the shortcomings of existing methods, be scalable, be capable of being understood by the general public, and utilize a broad viewpoint. After trying out a number of concepts, it appeared that a good approach would be to view the road network as a sub-component of a much larger system that also includes vehicles, people, goods-in-transit, and all the ancillary items needed to make the system function. Highway investment decisions could then be made on the basis of how they affect the total cost of operating the total system. A concept, named the "Total Cost of Transportation" method, was then developed and tested. The concept rests on four key principles: 1) that roads are but one sub-system of a much larger 'Road Based Transportation System', 2) that the size and activity level of the overall system are determined by market forces, 3) that the sum of everything expended, consumed, given up, or permanently reserved in building the system and generating the activity that results from the market forces represents the total cost of transportation, and 4) that the economic purpose of making road improvements is to minimize that total cost. To test the practical value of the theory, a special database and spreadsheet model of Iowa's county road network was developed. This involved creating a physical model to represent the size, characteristics, activity levels, and the rates at which the activities take place, developing a companion economic cost model, then using the two in tandem to explore a variety of issues. Ultimately, the theory and model proved capable of being used in full system, partial system, single segment, project, and general design guide levels of analysis. The method appeared to be capable of remedying many of the existing work method defects and to answer society's transportation questions from a new perspective.