66 resultados para engineering and maintenance enterprises
Report and Recommendations of the Iowa Vertical Infrastructure Advisory Committee, December 15, 2009
Resumo:
This report summaries the work of the committee over the last year and its vision for the future. The committee is followed with interest the work of the Department of Corrections and the Department of Veterans Affairs in evaluating the needs of their facilities and recommends similar evaluations of facilities around the state by other agencies. The committee members are ready to offer advice on the needs of the state's again infrastructure and steps that could be taken to evaluate vacant and underutilized buildings and reduce operational and maintenance costs.
Report and Recommendations of the Iowa Vertical Infrastructure Advisory Committee, December 13, 2011
Resumo:
This report summaries the work of the committee over the last year and its vision for the future. The committee is followed with interest the work of the Department of Corrections and the Department of Veterans Affairs in evaluating the needs of their facilities and recommends similar evaluations of facilities around the state by other agencies. The committee members are ready to offer advice on the needs of the state's again infrastructure and steps that could be taken to evaluate vacant and underutilized buildings and reduce operational and maintenance costs.
Report and Recommendations of the Iowa Vertical Infrastructure Advisory Committee, December 15, 2010
Resumo:
This report summaries the work of the committee over the last year and its vision for the future. The committee is followed with interest the work of the Department of Corrections and the Department of Veterans Affairs in evaluating the needs of their facilities and recommends similar evaluations of facilities around the state by other agencies. The committee members are ready to offer advice on the needs of the state's again infrastructure and steps that could be taken to evaluate vacant and underutilized buildings and reduce operational and maintenance costs.
Resumo:
The Highway Division of the Iowa DOT engages in research and development for two reasons: first, to find workable solutions to the many problems that require more than ordinary, routine investigation; and second, to identify and implement improved engineering and management practices. This report, entitled ―Iowa Highway Research Board Research and Development Activities FY2011‖ is submitted in compliance with Sections 310.36 and 312.3A, Code of Iowa, which direct the submission of a report of the Secondary Road Research Fund and the Street Research Fund, respectively. It is a report of the status of research and development projects in progress on June 30, 2011. It is also a report on projects completed during the fiscal year beginning July 1, 2010 and ending June 30, 2011. Detailed information on each of the research and development projects mentioned in this report is available from the Research and Technology Bureau, Highway Division, Iowa Department of Transportation. All approved reports are also online for viewing at: www.iowadot.gov/operationsresearch/reports.aspx.
Resumo:
This report fulfills the requirements of the following Code of Iowa Sections: Section 327J.3(1): “The director may expend moneys from the fund to pay the costs associated with the initiation, operation, and maintenance of rail passenger service. The director shall report by February 1 of each year to the legislative services agency concerning the status of the fund including anticipated expenditures for the following fiscal year.” Section 327J.3(5): "The director shall report annually to the general assembly concerning the development and operation of the midwest regional rail system and the state's passenger rail service."
Resumo:
The Iowa Department of Transportation (Iowa DOT), Nebraska Department of Roads (NDOR), and the Federal Highway Administration (FHWA) are proposing to improve the interstate system around Council Bluffs with improvements extending across the Missouri River on I-80 to east of the I-480 interchange in Omaha, Nebraska, see Figure 1-1. The study considers long-term, broad-based transportation improvements along I-80, I-29, and I-480, including approximately 18 mainline miles of interstate and 14 interchanges (3 system1, 11 service), that would add capacity and correct functional issues along the mainline and interchanges and upgrade the I-80 Missouri River Crossing. These improvements, once implemented, would bring the segments of I-80 and I-29 up to current engineering standards and modernize the roadway to accommodate future traffic needs. In 2001, Iowa DOT and FHWA initiated the Council Bluffs Interstate System (CBIS) Improvements Project. The agencies concluded that the environmental study process would be conducted in two stages; that is, a tiered approach would be applied. The project is being conducted pursuant to the National Environmental Policy Act (NEPA) regulations issued by the Council on Environmental Quality (CEQ), 40 Code of Federal Regulations (CFR) Part 1502.20, and FHWA 23 CFR Part 771.111, that permit tiering for large, complex NEPA studies. Tier 1 is an examination of the overall interstate system improvement needs, including a clear explanation of the area’s transportation needs, a study of alternatives to satisfy them, and broad consideration of potential environmental and social impacts. The Tier 1 evaluation is at a sufficient level of engineering and environmental detail to assist decision makers in selecting a preferred transportation strategy. Tier 1 includes preparation of a draft and final Environmental Impact Statement (EIS) that would disclose the potential environmental and social effects (evaluated at a planning level that considers a variety of conceptual designs) of the proposed improvements. The final EIS will conclude with a Record of Decision (ROD) that states the preferred plan for improvements to be implemented. Essentially, the Tier 1 document will establish the planning framework for the needed improvements. Because the scope of the overall system improvements is large, the interstate improvements would be implemented as a series of individual projects that fit into the overall planning framework. The Tier 1 Area of Potential Impact, which is discussed in detail in Section 4 is an alternative that considers a combination of the most reasonable concepts that have been developed, buffered by approximately 100 or more feet to ensure that any Tier 2 design modifications would remain inside the outer boundary.
Resumo:
The Federal Highway Administration (FHWA) approves the selection of the Reconstruction of All or Part of the Interstate (Construction Alternative) as the Preferred Alternative to provide improvements to the interstate system in the Omaha/Council Bluffs metropolitan area, extending across the Missouri River on Interstate 80 to east of the Interstate 480 interchange in Omaha, Nebraska. The study considered long-term, broad-based transportation improvements along Interstate I-29 (I-29), I-80, and I-480, including approximately 18 mainline miles of interstate and 14 interchanges (3 system, 11 service), that would add capacity and correct functional issues along the mainline and interchanges and upgrade the I-80 Missouri River Crossing. FHWA also approves the decisions to provide full access between West Broadway and I-29, design the I-80/I-29 overlap section as a dual-divided freeway, and locating the new I-80 Missouri River Bridge north of the existing bridge. Improvements to the interstate system, once implemented, would bring the segments of I-80 and I-29 (see Figure 1) up to current engineering standards and accommodate future traffic needs. This Record of Decision (ROD) concludes Tier 1 of the Council Bluffs Interstate System (CBIS) Improvements Project. Tier 1 included an examination of the area’s transportation needs, a study of alternatives to satisfy them, and broad consideration of potential environmental and social impacts. The Tier 1 evaluation consisted of a sufficient level of engineering and environmental detail to assist decision makers in selecting a preferred transportation strategy. During Tier 1 a Draft EIS (FHWA-IA- EIS-04-01D) was developed which was approved by FHWA, Iowa DOT, and Nebraska Department of Roads (NDOR) in November 2004 with comments accepted through March 15, 2005. The Draft EIS summarized the alternatives that were considered to address the transportation needs around Council Bluffs; identified reconstruction of all or part of the interstate, the “Construction Alternative,” as the Preferred Alternative; identified three system-level decisions that needed to be made at the Tier 1 level; and invited comment on the issues. The Final EIS (FHWA-IA- EIS-04-01F) further documented the Construction Alternative as the Preferred Alternative and identified the recommended decisions for the three system level decisions that needed to be made in Tier 1. This ROD defines the Selected Alternative determined in the Tier 1 studies.
Resumo:
Transportation agencies in Iowa are responsible for a significant public investment with the installation and maintenance of traffic control devices and pavement markings. Included in this investment are thousands of signs and other inventory items, equipment, facilities, and staff. The proper application of traffic control devices and pavement markings is critical to public safety on streets and highways, and local governments have a prescribed responsibility under the Code of Iowa to properly manage these assets. This research report addresses current traffic control and pavement marking application, maintenance, and management in Iowa.
Resumo:
In Iowa, there are currently no uniform design standards for rural and suburban subdivision development roadways. Without uniform design standards, many counties are unable to provide adequate guidance for public facilities, particularly roadways, to be constructed as part of a rural subdivision development. If a developer is not required to install appropriate public improvements or does not do so properly, significant liability and maintenance expenses can be expected, along with the potential for major project costs to correct the situation. Not having uniform design standards for rural and suburban subdivision development improvements in Iowa creates situations where there is potential for inconsistency and confusion. Differences in the way development standards are applied also create incentives or disincentives for developers to initiate subdivision platting in a particular county. With the wide range of standards or lack of standards for local roads in development areas, it is critical that some level of uniformity is created to address equity in development across jurisdictional lines. The standards must be effective in addressing the problem, but they must not be so excessive as to curtail development activities within a local jurisdiction. In order to address the concerns, cities and counties have to work together to identify where growth is going to be focused. Within that long-term growth area, the roadways should be constructed to urban standards to provide an easier transition to traditional urban facilities as the area is developed. Developments outside of the designated growth area should utilize a rural cross section since it is less likely to have concentrated urban development. The developers should be required to develop roadways that are designed for a minimum life of 40 years, and the county should accept dedication of the roadway and be responsible for its maintenance.
Resumo:
Expanded abstract: Iowa Department of Transportation (IA DOT) is finalizing research to streamline field inventory/inspection of culverts by Maintenance and Construction staff while maximizing the use of tablet technologies. The project began in 2011 to develop some new best practices for field staff to assist in the inventory, inspection and maintenance of assets along the roadway. The team has spent the past year working through the complexities of identifying the most appropriate tablet hardware for field data collection. A small scale deployment of tablets occurred in spring of 2013 to collect several safety related assets (culverts, signs, guardrail, and incidents). Data can be collected in disconnected or connected modes and there is an associated desktop environment where data can be viewed and queried after being synced into the master database. The development of a deployment plan and related workflow processes are underway; which will eventually feed information into IA DOTs larger asset management system and make the information available for decision making. The team is also working with the IA DOT Design Office on Computer Aided Drafting (CAD) data processing and the IA DOT Construction office with a new digital As-Built plan process to leverage the complete data life-cycle so information can be developed once and leveraged by the Maintenance staff farther along in the process.
Resumo:
The first phase of this research involved an effort to identify the issues relevant to gaining a better understanding of the County Engineering profession. A related objective was to develop strategies to attract responsible, motivated and committed professionals to pursue County Engineering positions. In an era where a large percentage of County Engineers are reaching retirement age, the shrinking employment pool may eventually jeopardize the quality of secondary road systems not only in Iowa, but nationwide. As we move toward the 21st century, in an era of declining resources, it is likely that professional staff members in charge of secondary roads will find themselves working with less flexible budgets for the construction and maintenance of roads and bridges. It was important to understand the challenges presented to them, and the degree to which those challenges will demand greater expertise in prioritizing resource allocations for the rehabilitation and maintenance of the 10 million miles of county roads nationwide. Only after understanding what a county engineer is and what this person does will it become feasible for the profession to begin "selling itself", i.e., attracting a new generation of County Engineers. Reaching this objective involved examining the responsibilities, goals, and, sometimes, the frustrations experienced by those persons in charge of secondary road systems in the nine states that agreed to participate in the study. The second phase of this research involved addressing ways to counter the problems associated with the exodus of County Engineers who are reaching retirement age. Many of the questions asked of participants asked them to compare the advantages and disadvantages of public sector work with the private sector. Based on interviews with nearly 50 County Engineers and feedback from 268 who returned surveys for the research, issues relevant to the profession were analyzed and recommendations were made to the profession as it prepares to attract a new generation. It was concluded that both State and Regional Associations for County Engineers, and the National Association of County Engineers are most well-situated to present opportunities for continued professional development. This factor is appealing for those who are interested in competitive advantages as professionals. While salaries in the public sector may not be able to effectively compete with those offered by the private sector, it was concluded that this is only one factor of concern to those who are in the business of "public service". It was concluded, however, that Boards of Supervisors and their equivalents in other states will need to more clearly understand the value of the contributions made by County Engineers. Then the selling points the profession can hope to capitalize on can focus on the strength of state organizations and a strong national organization that act as clearinghouses of information and advocates for the profession, as well as anchors that provide opportunities for staying current on issues and technologies.
Resumo:
The planning, construction and maintenance of its highways is the state's second highest business, next only to education. Of the nearly 113,090 miles of roads and streets in Iowa, the 10,271 miles in the Interstate and primary system are the direct responsibility of the Highway Commission.From its central headquarters in Ames, the Commission coordinates its statewide activities through facilities located in each of the 99 counties. These include six district offices, 47 resident offices and 165 maintenance garages.
Resumo:
This chapter covers initial placement, adjustment, and maintenance of utility facilities in, on, above or below the right-of-way of primary highways, including attachments to primary highway structures. It embodies the basic specifications and standards needed to ensure the safety of the highway user and the integrity of the highway. (2012 revision to 2005 policy.)
Resumo:
This chapter covers initial placement, adjustment, and maintenance of utility facilities in, on, above or below the right-of-way of primary highways, including attachments to primary highway structures. It embodies the basic specifications and standards needed, to ensure the safety of the highway user and the integrity of the highway. (2005 revision to 1992 policy.)
Resumo:
In the administration, planning, design, and maintenance of road systems, transportation professionals often need to choose between alternatives, justify decisions, evaluate tradeoffs, determine how much to spend, set priorities, assess how well the network meets traveler needs, and communicate the basis for their actions to others. A variety of technical guidelines, tools, and methods have been developed to help with these activities. Such work aids include design criteria guidelines, design exception analysis methods, needs studies, revenue allocation schemes, regional planning guides, designation of minimum standards, sufficiency ratings, management systems, point based systems to determine eligibility for paving, functional classification, and bridge ratings. While such tools play valuable roles, they also manifest a number of deficiencies and are poorly integrated. Design guides tell what solutions MAY be used, they aren't oriented towards helping find which one SHOULD be used. Design exception methods help justify deviation from design guide requirements but omit consideration of important factors. Resource distribution is too often based on dividing up what's available rather than helping determine how much should be spent. Point systems serve well as procedural tools but are employed primarily to justify decisions that have already been made. In addition, the tools aren't very scalable: a system level method of analysis seldom works at the project level and vice versa. In conjunction with the issues cited above, the operation and financing of the road and highway system is often the subject of criticisms that raise fundamental questions: What is the best way to determine how much money should be spent on a city or a county's road network? Is the size and quality of the rural road system appropriate? Is too much or too little money spent on road work? What parts of the system should be upgraded and in what sequence? Do truckers receive a hidden subsidy from other motorists? Do transportation professions evaluate road situations from too narrow of a perspective? In considering the issues and questions the author concluded that it would be of value if one could identify and develop a new method that would overcome the shortcomings of existing methods, be scalable, be capable of being understood by the general public, and utilize a broad viewpoint. After trying out a number of concepts, it appeared that a good approach would be to view the road network as a sub-component of a much larger system that also includes vehicles, people, goods-in-transit, and all the ancillary items needed to make the system function. Highway investment decisions could then be made on the basis of how they affect the total cost of operating the total system. A concept, named the "Total Cost of Transportation" method, was then developed and tested. The concept rests on four key principles: 1) that roads are but one sub-system of a much larger 'Road Based Transportation System', 2) that the size and activity level of the overall system are determined by market forces, 3) that the sum of everything expended, consumed, given up, or permanently reserved in building the system and generating the activity that results from the market forces represents the total cost of transportation, and 4) that the economic purpose of making road improvements is to minimize that total cost. To test the practical value of the theory, a special database and spreadsheet model of Iowa's county road network was developed. This involved creating a physical model to represent the size, characteristics, activity levels, and the rates at which the activities take place, developing a companion economic cost model, then using the two in tandem to explore a variety of issues. Ultimately, the theory and model proved capable of being used in full system, partial system, single segment, project, and general design guide levels of analysis. The method appeared to be capable of remedying many of the existing work method defects and to answer society's transportation questions from a new perspective.