101 resultados para design-build,


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concrete will suffer frost damage when saturated and subjected to freezing temperatures. Frost-durable concrete can be produced if a specialized surfactant, also known as an air-entraining admixture (AEA), is added during mixing to stabilize microscopic air voids. Small and well-dispersed air voids are critical to produce frost-resistant concrete. Work completed by Klieger in 1952 found the minimum volume of air required to consistently ensure frost durability in a concrete mixture subjected to rapid freezing and thawing cycles. He suggested that frost durability was provided if 18 percent air was created in the paste. This is the basis of current practice despite the tests being conducted on materials that are no longer available using tests that are different from those in use today. Based on the data presented, it was found that a minimum air content of 3.5 percent in the concrete and 11.0 percent in the paste should yield concrete durable in the ASTM C 666 with modern AEAs and low or no lignosulfonate water reducers (WRs). Limited data suggests that mixtures with a higher dosage of lignosulfonate will need about 1 percent more air in the concrete or 3 percent more air in the paste for the materials and procedures used. A spacing factor of 0.008 in. was still found to be necessary to provide frost durability for the mixtures investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Any transportation infrastructure system is inherently concerned with durability and performance issues. The proportioning and uniformity control of concrete mixtures are critical factors that directly affect the longevity and performance of the portland cement concrete pavement systems. At present, the only means available to monitor mix proportions of any given batch are to track batch tickets created at the batch plant. However, this does not take into account potential errors in loading materials into storage silos, calibration errors, and addition of water after dispatch. Therefore, there is a need for a rapid, cost-effective, and reliable field test that estimates the proportions of as-delivered concrete mixtures. In addition, performance based specifications will be more easily implemented if there is a way to readily demonstrate whether any given batch is similar to the proportions already accepted based on laboratory performance testing. The goal of the present research project is to investigate the potential use of a portable x-ray fluorescence (XRF) technique to assess the proportions of concrete mixtures as they are delivered. Tests were conducted on the raw materials, paste and mortar samples using a portable XRF device. There is a reasonable correlation between the actual and calculated mix proportions of the paste samples, but data on mortar samples was less reliable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The resilient modulus (MR) input parameters in the Mechanistic-Empirical Pavement Design Guide (MEPDG) program have a significant effect on the projected pavement performance. The MEPDG program uses three different levels of inputs depending on the desired level of accuracy. The primary objective of this research was to develop a laboratory testing program utilizing the Iowa DOT servo-hydraulic machine system for evaluating typical Iowa unbound materials and to establish a database of input values for MEPDG analysis. This was achieved by carrying out a detailed laboratory testing program designed in accordance with the AASHTO T307 resilient modulus test protocol using common Iowa unbound materials. The program included laboratory tests to characterize basic physical properties of the unbound materials, specimen preparation and repeated load triaxial tests to determine the resilient modulus. The MEPDG resilient modulus input parameter library for Iowa typical unbound pavement materials was established from the repeated load triaxial MR test results. This library includes the non-linear, stress-dependent resilient modulus model coefficients values for level 1 analysis, the unbound material properties values correlated to resilient modulus for level 2 analysis, and the typical resilient modulus values for level 3 analysis. The resilient modulus input parameters library can be utilized when designing low volume roads in the absence of any basic soil testing. Based on the results of this study, the use of level 2 analysis for MEPDG resilient modulus input is recommended since the repeated load triaxial test for level 1 analysis is complicated, time consuming, expensive, and requires sophisticated equipment and skilled operators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study is to systematically evaluate the Iowa Department of Transportation’s (DOT’s) existing Pavement Management Information System (PMIS) with respect to the input information required for Mechanistic-Empirical Pavement Design Guide (MEPDG) rehabilitation analysis and design. To accomplish this objective, all of available PMIS data for interstate and primary roads in Iowa were retrieved from the Iowa DOT PMIS. The retrieved data were evaluated with respect to the input requirements and outputs for the latest version of the MEPDG software (version 1.0). The input parameters that are required for MEPDG HMA rehabilitation design, but currently unavailable in the Iowa DOT PMIS were identified. The differences in the specific measurement metrics used and their units for some of the pavement performance measures between the Iowa DOT PMIS and MEPDG were identified and discussed. Based on the results of this study, it is recommended that the Iowa DOT PMIS should be updated, if possible, to include the identified parameters that are currently unavailable, but are required for MEPDG rehabilitation design. Similarly, the measurement units of distress survey results in the Iowa DOT PMIS should be revised to correspond to those of MEPDG performance predictions. *******************Large File**************************

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this research is to determine whether the nationally calibrated performance models used in the Mechanistic-Empirical Pavement Design Guide (MEPDG) provide a reasonable prediction of actual field performance, and if the desired accuracy or correspondence exists between predicted and monitored performance for Iowa conditions. A comprehensive literature review was conducted to identify the MEPDG input parameters and the MEPDG verification/calibration process. Sensitivities of MEPDG input parameters to predictions were studied using different versions of the MEPDG software. Based on literature review and sensitivity analysis, a detailed verification procedure was developed. A total of sixteen different types of pavement sections across Iowa, not used for national calibration in NCHRP 1-47A, were selected. A database of MEPDG inputs and the actual pavement performance measures for the selected pavement sites were prepared for verification. The accuracy of the MEPDG performance models for Iowa conditions was statistically evaluated. The verification testing showed promising results in terms of MEPDG’s performance prediction accuracy for Iowa conditions. Recalibrating the MEPDG performance models for Iowa conditions is recommended to improve the accuracy of predictions. ****************** Large File**************************

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the United States many bridge structures have been designed without consideration for their unique construction problems. Many problems could have been avoided if construction knowledge and experience was utilized in the design process. A systematic process is needed to create and capture construction knowledge for use in the design process. This study was conducted to develop a system to capture construction considerations from field people and incorporate it into a knowledge-base for use by the bridge designers. This report presents the results of this study. As a part of this study a microcomputer-based constructability system has been developed. The system is a user-friendly microcomputer database which codifies construction knowledge, provides easy access to specifications, and provides simple design computation checks for the designer. A structure for the final database was developed and used in the prototype system. A process for collecting, developing and maintaining the database is presented and explained. The study involved a constructability survey, interviews with designers and constructors, and visits to construction sites to collect constuctability concepts. The report describes the development of the constructability system and addresses the future needs for the Iowa Department of Transportation to make the system operational. A user's manual for the system is included along with the report.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drainage-basin and channel-geometry multiple-regression equations are presented for estimating design-flood discharges having recurrence intervals of 2, 5, 10, 25, 50, and 100 years at stream sites on rural, unregulated streams in Iowa. Design-flood discharge estimates determined by Pearson Type-III analyses using data collected through the 1990 water year are reported for the 188 streamflow-gaging stations used in either the drainage-basin or channel-geometry regression analyses. Ordinary least-squares multiple-regression techniques were used to identify selected drainage-basin and channel-geometry regions. Weighted least-squares multiple-regression techniques, which account for differences in the variance of flows at different gaging stations and for variable lengths in station records, were used to estimate the regression parameters. Statewide drainage-basin equations were developed from analyses of 164 streamflow-gaging stations. Drainage-basin characteristics were quantified using a geographic-information-system (GIS) procedure to process topographic maps and digital cartographic data. The significant characteristics identified for the drainage-basin equations included contributing drainage area, relative relief, drainage frequency, and 2-year, 24-hour precipitation intensity. The average standard errors of prediction for the drainage-basin equations ranged from 38.6% to 50.2%. The GIS procedure expanded the capability to quantitatively relate drainage-basin characteristics to the magnitude and frequency of floods for stream sites in Iowa and provides a flood-estimation method that is independent of hydrologic regionalization. Statewide and regional channel-geometry regression equations were developed from analyses of 157 streamflow-gaging stations. Channel-geometry characteristics were measured on site and on topographic maps. Statewide and regional channel-geometry regression equations that are dependent on whether a stream has been channelized were developed on the basis of bankfull and active-channel characteristics. The significant channel-geometry characteristics identified for the statewide and regional regression equations included bankfull width and bankfull depth for natural channels unaffected by channelization, and active-channel width for stabilized channels affected by channelization. The average standard errors of prediction ranged from 41.0% to 68.4% for the statewide channel-geometry equations and from 30.3% to 70.0% for the regional channel-geometry equations. Procedures provided for applying the drainage-basin and channel-geometry regression equations depend on whether the design-flood discharge estimate is for a site on an ungaged stream, an ungaged site on a gaged stream, or a gaged site. When both a drainage-basin and a channel-geometry regression-equation estimate are available for a stream site, a procedure is presented for determining a weighted average of the two flood estimates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stream degradation is the action of deepening the stream bed and widening the banks due to the increasing velocity of water flow. Degradation is pervasive in channeled streams found within the deep to moderately deep loess regions of the central United States. Of all the streams, however, the most severe and widespread entrenchment occurs in western Iowa streams that are tributaries to the Missouri River. In September 1995 the Iowa Department of Transportation awarded a grant to Golden Hills Resource Conservation and Development, Inc. The purpose of the grant, HR-385 "Stream Stabilization in Western Iowa: Structure Evaluation and Design Manual", was to provide an assessment of the effectiveness and costs of various stabilization structures in controlling erosion on channeled streams. A review of literature, a survey of professionals, field observations and an analysis of the data recorded on fifty-two selected structures led to the conclusions presented in the project's publication, Design Manual, Streambed Degradation and Streambank Widening in Western Iowa. Technical standards and specifications for the design and construction of stream channel stabilization structures are included in the manual. Additional information on non-structural measures, monitoring and evaluation of structures, various permit requirements and further resources are also included. Findings of the research project and use and applications of the Design Manual were presented at two workshops in the Loess Hills region. Participants in these workshops included county engineers, private contractors, state and federal agency personnel, elected officials and others. The Design Manual continues to be available through Golden Hills Resource Conservation and Development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Researchers should continuously ask how to improve the models we rely on to make financial decisions in terms of the planning, design, construction, and maintenance of roadways. This project presents an alternative tool that will supplement local decision making but maintain a full appreciation of the complexity and sophistication of today’s regional model and local traffic impact study methodologies. This alternative method is tailored to the desires of local agencies, which requested a better, faster, and easier way to evaluate land uses and their impact on future traffic demands at the sub-area or project corridor levels. A particular emphasis was placed on scenario planning for currently undeveloped areas. The scenario planning tool was developed using actual land use and roadway information for the communities of Johnston and West Des Moines, Iowa. Both communities used the output from this process to make regular decisions regarding infrastructure investment, design, and land use planning. The City of Johnston case study included forecasting future traffic for the western portion of the city within a 2,600-acre area, which included 42 intersections. The City of West Des Moines case study included forecasting future traffic for the city’s western growth area covering over 30,000 acres and 331 intersections. Both studies included forecasting a.m. and p.m. peak-hour traffic volumes based upon a variety of different land use scenarios. The tool developed took goegraphic information system (GIS)-based parcel and roadway information, converted the data into a graphical spreadsheet tool, allowed the user to conduct trip generation, distribution, and assignment, and then to automatically convert the data into a Synchro roadway network which allows for capacity analysis and visualization. The operational delay outputs were converted back into a GIS thematic format for contrast and further scenario planning. This project has laid the groundwork for improving both planning and civil transportation decision making at the sub-regional, super-project level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors have post-tensioned and monitored two Iowa bridges and have field tested the post-tensioning of a composite bridge in Florida. In order to provide the practical post-tensioning distribution factors given in this manual, the authors developed a finite element model of a composite bridge and checked the model against a one-half scale laboratory bridge and two actual composite bridges, one of which had a 45 deg skew. Following a brief discussion of this background research, this manual explains the use of elastic, composite beam and bridge section properties, the distribution fractions for symmetrically post-tensioned exterior beams, and a method for computing the strength of a post-tensioned beam. Also included is a design example for a typical, 51.25-ft (15.62-m) span, four-beam composite bridge. Moments for Iowa Department of Transportation rating trucks, H 20 and HS 20 trucks, have been tabulated for design convenience and are included in the appendix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Culverts are common means to convey flow through the roadway system for small streams. In general, larger flows and road embankment heights entail the use of multibarrel culverts (a.k.a. multi-box) culverts. Box culverts are generally designed to handle events with a 50-year return period, and therefore convey considerably lower flows much of the time. While there are no issues with conveying high flows, many multi-box culverts in Iowa pose a significant problem related to sedimentation. The highly erosive Iowa soils can easily lead to the situation that some of the barrels can silt-in early after their construction, becoming partially filled with sediment in few years. Silting can reduce considerably the capacity of the culvert to handle larger flow events. Phase I of this Iowa Highway Research Board project (TR-545) led to an innovative solution for preventing sedimentation. The solution was comprehensively investigated through laboratory experiments and numerical modeling aimed at screening design alternatives and testing their hydraulic and sediment conveyance performance. Following this study phase, the Technical Advisory Committee suggested to implement the recommended sediment mitigation design to a field site. The site selected for implementation was a 3-box culvert crossing Willow Creek on IA Hwy 1W in Iowa City. The culvert was constructed in 1981 and the first cleanup was needed in 2000. Phase II of the TR 545 entailed the monitoring of the site with and without the selfcleaning sedimentation structure in place (similarly with the study conducted in laboratory). The first monitoring stage (Sept 2010 to December 2012) was aimed at providing a baseline for the operation of the as-designed culvert. In order to support Phase II research, a cleanup of the IA Hwy 1W culvert was conducted in September 2011. Subsequently, a monitoring program was initiated to document the sedimentation produced by individual and multiple storms propagating through the culvert. The first two years of monitoring showed inception of the sedimentation in the first spring following the cleanup. Sedimentation continued to increase throughout the monitoring program following the depositional patterns observed in the laboratory tests and those documented in the pre-cleaning surveys. The second part of Phase II of the study was aimed at monitoring the constructed self-cleaning structure. Since its construction in December 2012, the culvert site was continuously monitored through systematic observations. The evidence garnered in this phase of the study demonstrates the good performance of the self-cleaning structure in mitigating the sediment deposition at culverts. Besides their beneficial role in sediment mitigation, the designed self-cleaning structures maintain a clean and clear area upstream the culvert, keep a healthy flow through the central barrel offering hydraulic and aquatic habitat similar with that in the undisturbed stream reaches upstream and downstream the culvert. It can be concluded that the proposed self-cleaning structural solution “streamlines” the area upstream the culvert in a way that secures the safety of the culvert structure at high flows while producing much less disturbance in the stream behavior compared with the current constructive approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Expansion joints increase both the initial cost and the maintenance cost of bridges. Integral abutment bridges provide an attractive design alternative because expansion joints are eliminated from the bridge itself. However, the piles in these bridges are subjected to horizontal movement as the bridge expands and contracts during temperature changes. The objective of this research was to develop a method of designing piles for these conditions. Separate field tests simulating a pile and a bridge girder were conducted for three loading cases: (1) vertical load only, (2) horizontal displacement of pile head only, and (3) combined horizontal displacement of pile head with subsequent vertical load. Both tests (1) and (3) reached the same ultimate vertical load, that is, the horizontal displacement had no effect on the vertical load capacity. Several model tests were conducted in sand with a scale factor of about 1:10. Experimental results from both the field and model tests were used to develop the vertical and horizontal load-displacement properties of the soil. These properties were input into the finite element computer program Integral Abutment Bridge Two-Dimensional (IAB2D), which was developed under a previous research contract. Experimental and analytical results compared well for the test cases. Two alternative design methods, both based upon the American Association of State Highway and Transportation Officials (AASHTO) Specification, were developed. Alternative One is quite conservative relative to IAB2D results and does not permit plastic redistribution of forces. Alternative Two is also conservative when compared to IAB2D, but plastic redistribution is permitted. To use Alternative Two, the pile cross section must have sufficient inelastic rotation capacity before local buckling occurs. A design example for a friction pile and an end-bearing pile illustrates both alternatives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since integral abutment bridges decrease the initial and maintenance costs of bridges, they provide an attractive alternative for bridge designers. The objective of this project is to develop rational and experimentally verified design recommendations for these bridges. Field testing consisted of instrumenting two bridges in Iowa to monitor air and bridge temperatures, bridge displacements, and pile strains. Core samples were also collected to determine coefficients of thermal expansion for the two bridges. Design values for the coefficient of thermal expansion of concrete are recommended, as well as revised temperature ranges for the deck and girders of steel and concrete bridges. A girder extension model is developed to predict the longitudinal bridge displacements caused by changing bridge temperatures. Abutment rotations and passive soil pressures behind the abutment were neglected. The model is subdivided into segments that have uniform temperatures, coefficients of expansion, and moduli of elasticity. Weak axis pile strains were predicted using a fixed-head model. The pile is idealized as an equivalent cantilever with a length determined by the surrounding soil conditions and pile properties. Both the girder extension model and the fixed-head model are conservative for design purposes. A longitudinal frame model is developed to account for abutment rotations. The frame model better predicts both the longitudinal displacement and weak axis pile strains than do the simpler models. A lateral frame model is presented to predict the lateral motion of skewed bridges and the associated strong axis pile strains. Full passive soil pressure is assumed on the abutment face. Two alternatives for the pile design are presented. Alternative One is the more conservative and includes thermally induced stresses. Alternative Two neglects thermally induced stresses but allows for the partial formation of plastic hinges (inelastic redistribution of forces). Ductility criteria are presented for this alternative. Both alternatives are illustrated in a design example.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Metric Training For The Highway Industry", HR-376 was designed to produce training materials for the various divisions of the Iowa DOT, local government and the highway construction industry. The project materials were to be used to introduce the highway industry in Iowa to metric measurements in their daily activities. Five modules were developed and used in training over 1,000 DOT, county, city, consultant and contractor staff in the use of metric measurements. The training modules developed deal with the planning through operation areas of highway transportation. The materials and selection of modules were developed with the aid of an advisory personnel from the highway industry. Each module is design as a four hour block of instruction and a stand along module for specific types of personnel. Each module is subdivided into four chapters with chapter one and four covering general topics common to all subjects. Chapters two and three are aimed at hands on experience for a specific group and subject. This module includes: Module 3 - Road and Bridge Design. This module provides hands on examples of how to use metric measurements in the design of roads and structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The need for upgrading a large number of understrength bridges in the United States has been well documented in the literature. This manual presents two methods for strengthening continuous-span composite bridges: post-tensioning of the positive moment regions of the bridge stringers and the addition of superimposed trusses at the piers. The use of these two systems is an efficient method of reducing flexural overstresses in undercapacity bridges. Before strengthening a given bridge however, other deficiencies (inadequate shear connection, fatigue problems, extensive corrosion) should be addressed. Since continuous-span composite bridges are indeterminant structures, there is longitudinal and transverse distribution of the strengthening axial forces and moments. This manual basically provides the engineer with a procedure for determining the distribution of strengthening forces and moments throughout the bridge. As a result of the longitudinal and transverse force distribution, the design methodology presented in this manual for continuous-span composite bridges is extremely complex. To simplify the procedure, a spreadsheet has been developed for use by practicing engineers. This design aid greatly simplifies the design of a strengthening system for a given bridge in that it eliminates numerous tedious hand calculations, computes the required force and moment fractions, and performs the necessary iterations for determining the required strengthening forces. The force and moment distribution fraction formulas developed in this manual are primarily for the Iowa DOT V12 and V14 three-span four-stringer bridges. These formulas may be used on other bridges if they are within the limits stated in this manual. Use of the distribution fraction formulas for bridges not within the stated limits is not recommended.