53 resultados para Uniform dichotomy
Resumo:
This research was initiated in 1991 as a part of a whitetopping project to study the effectiveness of various techniques to enhance bond strength between a new portland cement concrete (PCC) overlay and an existing asphalt cement concrete (ACC) pavement surface. A 1,676 m (5,500 ft) section of county road R16 in Dallas County was divided into 12 test sections. The various techniques used to enhance bond were power brooming, power brooming with air blast, milling, cement and water grout, and emulsion tack coat. Also, two sections were planed to a uniform cross-section, two pavement thicknesses were placed, and two different concrete mix proportions were used. Bond strength was perceived to be the key to determining an appropriate design procedure for whitetopping. If adequate bond is achieved, a bonded PCC overlay technique can be used for design. Otherwise, an unbonded overlay procedure may be more appropriate. Conclusions are as follows: (1) Bond Strength Differences - Milling increased bond strength versus no milling. Tack coat showed increased bond strength versus no tack coat. Planing, Air Blast and Grouting did not provide noticeable improvements in bond strength; nor did different PCC types or thicknesses affect bond strength significantly. (2) Structure - Structural measurements correlated strongly with the wide variation in pavement thicknesses. They did not provide enough information to determine the strength of bonding or the level of support being provided by the ACC layer. Longitudinal cracking correlated with PCC thicknesses and with planing. (3) Bond Over Time - The bond between PCC and ACC layers is degrading over time in the outside wheel path in all of the sections except tack coat (section 12). The bond strength in the section with tack coat was lower than the others, but remained relatively steady.
Resumo:
This study was conducted for the purpose of evaluating a new concept for a bank-protection structure: The Iowa Vane . The underlying idea involves countering the torque exerted on the primary flow by its curvature and vertical velocity gradient, thereby eliminating or significantly reducing the secondary flow and thus reducing the undermining of the outer banks and the high-velocity attack on it. The new structure consists of an array of short, vertical, submerged vanes installed with a certain orientation on the channel bed. A relatively small number of vanes can produce bend flows which are practically uniform across the channel. The height of the vanes is less than half the water depth, and their angle with the flow direction is of the order of l0 degrees. In this study, design relations have been established. The relations, and the vanes' overall performance, have been tested in a laboratory model under different flow and sediment conditions. The results are used for the design of an Iowa-Vane bank protection structure for a section of East Nishnabotna River along U.S. Highway 34 at Red Oak, Iowa.
Resumo:
This research consisted of five laboratory experiments designed to address the following two objectives in an integrated analysis: (1) To discriminate between the symbol Stop Ahead warning sign and a small set of other signs (which included the word-legend Stop Ahead sign); and (2) To analyze sign detection, recognizability, and processing characteristics by drivers. A set of 16 signs was used in each of three experiments. A tachistoscope was used to display each sign image to a respondent for a brief interval in a controlled viewing experiment. The first experiment was designed to test detection of a sign in the driver's visual field; the second experiment was designed to test the driver's ability to recognize a given sign in the visual field; and the third experiment was designed to test the speed and accuracy of a driver's response to each sign as a command to perform a driving action. A fourth experiment tested the meanings drivers associated with an eight-sign subset of the 16 signs used in the first three experiments. A fifth experiment required all persons to select which (if any) signs they considered to be appropriate for use on two scale model county road intersections. The conclusions are that word-legend Stop Ahead signs are more effective driver communication devices than symbol stop-ahead signs; that it is helpful to drivers to have a word plate supplementing the symbol sign if a symbol sign is used; and that the guidance in the Manual on Uniform Traffic Control Devices on the placement of advance warning signs should not supplant engineering judgment in providing proper sign communication at an intersection.
Resumo:
Since integral abutment bridges decrease the initial and maintenance costs of bridges, they provide an attractive alternative for bridge designers. The objective of this project is to develop rational and experimentally verified design recommendations for these bridges. Field testing consisted of instrumenting two bridges in Iowa to monitor air and bridge temperatures, bridge displacements, and pile strains. Core samples were also collected to determine coefficients of thermal expansion for the two bridges. Design values for the coefficient of thermal expansion of concrete are recommended, as well as revised temperature ranges for the deck and girders of steel and concrete bridges. A girder extension model is developed to predict the longitudinal bridge displacements caused by changing bridge temperatures. Abutment rotations and passive soil pressures behind the abutment were neglected. The model is subdivided into segments that have uniform temperatures, coefficients of expansion, and moduli of elasticity. Weak axis pile strains were predicted using a fixed-head model. The pile is idealized as an equivalent cantilever with a length determined by the surrounding soil conditions and pile properties. Both the girder extension model and the fixed-head model are conservative for design purposes. A longitudinal frame model is developed to account for abutment rotations. The frame model better predicts both the longitudinal displacement and weak axis pile strains than do the simpler models. A lateral frame model is presented to predict the lateral motion of skewed bridges and the associated strong axis pile strains. Full passive soil pressure is assumed on the abutment face. Two alternatives for the pile design are presented. Alternative One is the more conservative and includes thermally induced stresses. Alternative Two neglects thermally induced stresses but allows for the partial formation of plastic hinges (inelastic redistribution of forces). Ductility criteria are presented for this alternative. Both alternatives are illustrated in a design example.
Resumo:
The primary objectives of this research project were: 1. Determine and recommend solutions for problems relating to shipping, storing and batching of fly ash. 2. Establish a procedure for batching, mixing and placing uniform concrete with specified air content and consistency. 3. Demonstrate that concrete of comparable quality can be produced.
Resumo:
The inadequate supply of suitable road surfacing material in the southern part of Iowa raises the question of the possibility of utilizing certain shales abundant in this area. These carbonaceous shales commonly overlie the coal beds and may also be found as impurities in the coal seams. They constitute the "slate" which with minor amounts of coal makes up the "gob" piles at the mines. These shales frequently contain enough carbonaceous material to burn. Those which do not usually require only a relatively small amount of coal mixed with them to support combustion. As a result, the "gob" piles frequently burn. The residual shale material is frequently used locally as a road surfacing material. However, since there is no control over the burning, there is no assurance that the product is the most suitable which might be produced or that it is even uniform in its properties. To determine if a controlled burning would produce a suitable road building product economically a research project "Use of Shales as Highway Materials" (ISHC Project HR-21, IEES Project 299-S) was set up in the Iowa Engineering Experiment Station with funds provided by the Iowa State Highway Commission, This project was supervised by Charles Frush, formerly Assistant Professor of Mining Engineering at Iowa State University. The various shales were subjected to controlled burning, and the solid residues were tested for their suitability for highway use.
Resumo:
The primary objectives of this research project were: 1. Determine and recommend solutions for problems relating to shipping, storing and batching of fly ash. 2. Establish a procedure for batching, mixing and placing uniform concrete with specified air content and consistency. 3. Demonstrate that concrete of comparable quality can be produced.
Resumo:
Approximately 40,000 tons of slightly damaged asphalt concrete has been removed from Interstate 80 in Cass and stockpiled. Laboratory tests had indicated that this material had considerable value when upgraded with new aggregate and asphalt cement. This report documents the procedures used and results obtained on an experimental recycling project. It was demonstrated that present drum mixing-recycling equipment and procedures can be used to utilize this material with satisfactory results. Laboratory analyses of material components and mixtures were performed; these analyses indicate mixture can be produced that is uniform, stable, and very closely resembles mixture produced with all new material. Follow~up evaluations will be made to determine the effects of traffic and environment. Preliminary data indicate that plans should be made to incorporate the stockpiled material in projects near the stockpile site.