54 resultados para Secondary Impacts
Resumo:
As of December 31, 1970 there were 57,270 miles of Local Secondary roads and 32,958 miles of Farm to Market roads in the Iowa secondary road system. The Local Secondary system carried a traffic load of 2,714,180 daily vehicle miles, accounting for 32% of all traffic in the secondary system. For all Local Secondary roads having some form of surfacing, 98% were surfaced with gravel or crushed stone. During the 1970 construction year 335 miles of surfaced roads were constructed in the Local Secondary system with 78% being surfaced with gravel or crushed stone. The total maintenance expenditure for all secondary roads in Iowa during 1970 amounted to $40,086,091. Of this, 42%, or $17,020,332, was spent for aggregate replacement on existing gravel or crushed stone roads with an additional 31% ($12,604,456) being spent on maintenance other than resurfacing. This amounts to 73% of the total maintenance budget and are the largest two maintenance expenditure items out of a list of 10 ranging from bridges to drainage assessments. The next largest item was 7%, for maintenance of existing flexible bases. Three concurrent phases of study were included in this project: (1) laboratory screenings studies of various additives thought to have potential for long-lasting dust palliation, soil additive strength, durability, and additive retention potential; (2) test road construction using those additives that indicated promise for performance-serviceability usage; and (3) observations and tests of constructed sections for evaluation of the additive's contribution to performance and serviceability as well as the relationship to initial costs.
Resumo:
A combined study of dust control and low-cost surface improvements of soil and aggregate materials for immediate (and intermediate) use as a treated surface course is being conducted in three concurrent phases: (1) laboratory screening of various additives thought to have potential for long-lasting dust palliation, soil-additive strength, durability, and additive retention potential; (2) test road construction, using those additives from the screening studies that indicate promise for performance and serviceability; and (3) observation and tests of constructed sections for evaluation of the additive's contribution to performance and serviceability as well as relationship to initial costs. A brief review is presented of the problem, some methods of measuring it, previously adopted approaches to it, project field tests and a portion of the results thus far, and portions of the laboratory work accomplished in the screening studies.
Resumo:
Highway agencies spend millions of dollars to ensure safe and efficient winter travel. However, the effectiveness of winter-weather maintenance practices on safety and mobility are somewhat difficult to quantify. Safety and Mobility Impacts of Winter Weather - Phase 1 investigated opportunities for improving traffic safety on state-maintained roads in Iowa during winter-weather conditions. In Phase 2, three Iowa Department of Transportation (DOT) high-priority sites were evaluated and realistic maintenance and operations mitigation strategies were also identified. In this project, site prioritization techniques for identifying roadway segments with the potential for safety improvements related to winter-weather crashes, were developed through traditional naïve statistical methods by using raw crash data for seven winter seasons and previously developed metrics. Additionally, crash frequency models were developed using integrated crash data for four winter seasons, with the objective of identifying factors that affect crash frequency during winter seasons and screening roadway segments using the empirical Bayes technique. Based on these prioritization techniques, 11 sites were identified and analyzed in conjunction with input from Iowa DOT district maintenance managers and snowplow operators and the Iowa DOT Road Weather Information System (RWIS) coordinator.
Resumo:
Conventional concrete is typically cured using external methods. External curing prevents drying of the surface, allows the mixture to stay warm and moist, and results in continued cement hydration (Taylor 2014). Internal curing is a relatively recent technique that has been developed to prolong cement hydration by providing internal water reservoirs in a concrete mixture that do not adversely affect the concrete mixture’s fresh or hardened physical properties. Internal curing grew out of the need for more durable structural concretes that were resistant to shrinkage cracking. Joint spacing for concrete overlays can be increased if slab warping is reduced or eliminated. One of the most promising potential benefits from using internal curing for concrete overlays, then, is the reduced number of joints due to increased joint spacing (Wei and Hansen 2008).
Resumo:
The State of Iowa has too many roads. Although ranking thirty-fourth in population, twenty-fifth in area, and twentieth in motor vehicle registration, it ranks seventh in the nation in miles of rural roads. In 1920 when Iowa's rural population was 1,528,000, there were 97,440 miles of secondary roads. In 1960 with rural population down 56 percent to 662,000, there were 91,000 miles of secondary roads--a 7 percent decrease. The question has been asked: "Who are these 'service roads' serving?" This excess mileage tends to dissipate road funds at a critical time of increasing public demand for better and safer roads.
Resumo:
This project concept and assessment of impacts includes information on future four-lane construction of U.S. 151 from the existing four-lane section near Cedar Rapids to Dubuque.
Resumo:
This report details the amount and use of Enrich Iowa funding Iowa libraries received for the Direct State Aid program. Annually, Iowa libraries are required to report on the use of this funding in set categories, but libraries are also given the opportunity to provide comments or stories on the impacts of these funds. The right column includes the comments submitted by Iowa libraries.
Resumo:
This final report summarizes the activities of the archaeological surveys contract for primary roads, secondary roads, and urban systems. The contract is negotiated annually between the Iowa Department of Transportation and the University of Iowa. The information contained is composed of summaries abstracted from completed cultural resource reports on file with the Department of Transportation, the Office of Historic Preservation, and the Office of the State Archaeologist.
Resumo:
This final report summarizes the activities of the archaeological surveys contract for primary roads, secondary roads, and urban systems. The contract is negotiated annually between the Iowa Department of Transportation and the University of Iowa. The information contained in this section of the report is composed of summaries abstracted from completed cultural resource reports on file with the Department of Transportation, the Office of Historic Preservation, and the Office of the State Archaeologist.