956 resultados para Roads and highways
Resumo:
RESEARCH AND DEVELOPMENT The Highway Division of the Iowa Department of Transportation (Iowa DOT) engages in research and development for two reasons: first, to find workable solutions to the many problems that require more than ordinary, routine investigation; second, to identify and implement improved engineering and management practices. This report, entitled "Iowa Highway Research Board Research and Development Activities FY2008" is submitted in compliance with Sections 310.36 and 3 I2.3A, Code of Iowa, which direct the submission of a report of the Secondary Road Research Fund and the Street Research Fund respectively. It is a report of the status of research and development projects in progress on June 30, 2008; it is also a report on projects completed during the fiscal year beginning July 1, 2007, and ending June 30, 2008. Detailed information on each of the research and development projects mentioned in this report is available in the Research and Technology Bureau in the Highway Division of the Iowa Department of Transportation. IOWA HIGHWAY RESEARCH BOARD In developing a progressive, continuing and coordinated program of research and development, the Highway Division is assisted by the Iowa Highway Research Board. This advisory group was established in 1949 by the Iowa State Highway Commission to respond to the research denoted in Section 310.36 of the Code of Iowa and now is denoted by 312.3A. The Research Board consists of 15 regular members: seven Iowa county engineers, four Iowa DOT engineers, one representative from Iowa State University, one from The University of Iowa, and two engineers employed by Iowa municipalities. Each regular member may have an alternate who will serve at the request of the regular member. The regular members and their alternates are appointed for a three-year term. The membership of the Research Board as of June 30, 2008, is listed in Table I. The Research Board held nine regular meetings during the period ofJuly 1, 2007, to June 30, 2008. Suggestions for research and development were reviewed at these meetings and recommendations were made by the Board.
Resumo:
This a survey that determines the total number and type of vehicles entering and leaving Indianola to obtain origin and destination data from representataive samples of those vehicles.
Resumo:
This report, entitled “Iowa Highway Research Board Research and Development Activities FY 2010” is submitted in compliance with Sections 301.35 and 312.3A, Code of Iowa, which direct the submission of a report of the Secondary Road Research Fund and the Street Research Fund, respectively. T is a report of the status of research and development projects in progress on June 20, 2010. It is also a report on projects completed during the fiscal year beginning July 1, 2009, and ending June 30, 2010. Detailed information on each of the research and development projects mentioned in this report is available from the Research and Technology Bureau, Highway Division, Iowa Department of Transportation. All approved reports are also online for viewing at www.iowadot.gov/operationsresearch/reports.aspx
Resumo:
The Federal Highway Administration (FHWA) approves the selection of the Reconstruction of All or Part of the Interstate (Construction Alternative) as the Preferred Alternative to provide improvements to the interstate system in the Omaha/Council Bluffs metropolitan area, extending across the Missouri River on Interstate 80 to east of the Interstate 480 interchange in Omaha, Nebraska. The study considered long-term, broad-based transportation improvements along Interstate I-29 (I-29), I-80, and I-480, including approximately 18 mainline miles of interstate and 14 interchanges (3 system, 11 service), that would add capacity and correct functional issues along the mainline and interchanges and upgrade the I-80 Missouri River Crossing.
Resumo:
The Iowa Department of Transportation (Iowa DOT), Nebraska Department of Roads (NDOR), and the Federal Highway Administration (FHWA) are proposing to improve the interstate system around Council Bluffs with improvements extending across the Missouri River on I-80 to east of the I-480 interchange in Omaha, Nebraska, see Figure 1-1. The study considers long-term, broad-based transportation improvements along I-80, I-29, and I-480, including approximately 18 mainline miles of interstate and 14 interchanges (3 system1, 11 service), that would add capacity and correct functional issues along the mainline and interchanges and upgrade the I-80 Missouri River Crossing. These improvements, once implemented, would bring the segments of I-80 and I-29 up to current engineering standards and modernize the roadway to accommodate future traffic needs
Resumo:
This Tier 2 Environmental Assessment (EA) presents the results of studies and analysis conducted to determine the potential impacts of proposed improvements in Segment 3 of the Council Bluffs Interstate System (CBIS) in the Council Bluffs metropolitan area. This document is tiered to the Tier 1 Draft and Final Environmental Impact Statements (EIS) that evaluated impacts of the overall CBIS Improvements Project, which includes five segments of independent utility This EA on Segment 3 of the Project is divided into the following sections: and encompasses 18 mainline miles of Interstate and 14 interchanges along Interstate 80 (I-80), Interstate 29 (I-29), and Interstate 480 (I-480).
Resumo:
The Iowa Department of Transportation (Iowa DOT), Nebraska Department of Roads (NDOR), and the Federal Highway Administration (FHWA) are proposing improvements to the interstate system in the Omaha/Council Bluffs metropolitan area, extending across the Missouri River on Interstate 80 (I-80) to east of the Interstate 480 (I-480) interchange in Omaha, Nebraska (see Figure 1-1). The study considers long-term, broad-based transportation improvements along Interstate I-29 (I-29), I-80, and I-480, including approximately 18 mainline miles of interstate and 14 interchanges (3 system1, 11 service), that would add capacity and correct functional issues along the mainline and interchanges and upgrade the I-80 Missouri River Crossing. These improvements, once implemented, would bring the segments of I-80 and I-29 up to current engineering standards and modernize the roadway to accommodate future traffic needs.
Resumo:
Public roads by surface type in Iowa by Iowa Department of Transportation.
Resumo:
The Department of Transportation produced a report on how funds are used on state parks and institutional roads in Iowa and what year the funds are used.
Resumo:
This document serves as a reference guide to local planning agencies for the development of their regional Transportation Improvement Program (TIP) and the Statewide Transportation Improvement Program (STIP).
Resumo:
The Transportation Equity Act of the 21st Century (TEA-21) (23 CFR) mandated environmental streamlining in order to improve transportation project delivery without compromising environmental protection. In accordance with TEA-21, the environmental review process for this project has been documented as a Streamlined Environmental Assessment (EA). This document addresses only those resources or features that apply to the project. This allowed study and discussion of resources present in the study area, rather than expend effort on resources that were either not present or not impacted. Although not all resources are discussed in the EA, they were considered during the planning process and are documented in the Streamlined Resource Summary, shown in Appendix A. The following table shows the resources considered during the environmental review for this project. The first column with a check means the resource is present in the project area. The second column with a check means the impact to the resource warrants more discussion in this document. The other listed resources have been reviewed and are included in the Streamlined Resource Summary.
Resumo:
This document summarizes the discussion and findings of a workshop on intelligent compaction for soils and hot-mix asphalt held in West Des Moines, Iowa, on April 2–4, 2008. The objective of the meeting was to provide a collaborative exchange of ideas for developing research initiatives that accelerate implementation of intelligent compaction (IC) technologies for soil, aggregates, and hot mix asphalt. Technical presentations, working breakout sessions, a panel discussion, and a group implementation strategy session comprised the workshop activities. About 100 attendees representing state departments of transportation, Federal Highway Administration, contractors, equipment manufacturers, and researchers participated in the workshop.
Resumo:
Tort claims resulting from alleged highway defects have introduced an additional element in the planning, design, construction, and maintenance of highways. A survey of county governments in Iowa was undertaken in order to quantify the magnitude and determine the nature of this problem. This survey included the use of mailed questionnaires and personal interviews with County Engineers. Highway-related claims filed against counties in Iowa amounted to about $52,000,000 during the period 1973 through 1978. Over $30,000,000 in claims was pending at the end of 1978. Settlements of judgments were made at a cost of 12.2% of the amount claimed for those claims that had been disposed of, not including costs for handling claims, attorney fees, or court costs. There was no clear time trend in the amount of claims for the six-year period surveyed, although the amount claimed in 1978 was about double the average for the preceding five years. Problems that resulted in claims for damages from counties have generally related to alleged omissions in the use of traffic control devices or defects, often temporary, resulting from alleged inadequacies in highway maintenance. The absence of stop signs or warning signs often has been the central issue in a highway-related tort claim. Maintenance problems most frequently alleged have included inadequate shoulders, surface roughness, ice o? snow conditions, and loose gravel. The variation in the occurrence of tort claims among 85 counties in Iowa could not be related to any of the explanatory variables that were tested. Claims appeared to have occurred randomly. However, using data from a sub sample of 11 counties, a significant relationship was shown probably to exist between the amount of tort claims and the extensiveness of use of warning signs on the respective county road systems. Although there was no indication in any county that their use of warning signs did not conform with provisions of the Manual on Uniform Traffic Control Devices (Federal Highway Administration, Government Printing Office, Washington, D.C., 1978), many more warning signs were used in some counties than would be required to satisfy this minimum requirement. Sign vandalism reportedly is a problem in all counties. The threat of vandalism and the added costs incurred thereby have tended to inhibit more extensive use of traffic control devices. It also should be noted that there is no indication from this research of a correlation between the intensiveness of sign usage and highway safety. All highway maintenance activities introduce some extraordinary hazard for motorists. Generally effective methodologies have evolved for use on county road systems for routine maintenance activities, procedures that tend to reduce the hazard to practical and reasonably acceptable levels. Blading of loose-surfaced roads is an example of such a routine maintenance activity. Alternative patterns for blading that were investigated as part of this research offered no improvements in safety when compared with the method in current use and introduced a significant additional cost that was unacceptable, given the existing limitations in resources available for county roads.
Resumo:
This manual summarizes the roadside tree and brush control methods used by all of Iowa's 99 counties. It is based on interviews conducted in Spring 2002 with county engineers, roadside managers and others. The target audience of this manual is the novice county engineer or roadside manager. Iowa law is nearly silent on roadside tree and brush control, so individual counties have been left to decide on the level of control they want to achieve and maintain. Different solutions have been developed but the goal of every county remains the same: to provide safe roads for the traveling public. Counties in eastern and southern Iowa appear to face the greatest brush control challenge. Most control efforts can be divided into two categories: mechanical and chemical. Mechanical control includes cutting tools and supporting equipment. A chain saw is the most widely used cutting tool. Tractor mounted boom mowers and brush cutters are used to prune miles of brush but have significant safety and aesthetic limitations and boom mowers are easily broken by inexperienced operators. The advent of tree shears and hydraulic thumbs offer unprecedented versatility. Bulldozers are often considered a method of last resort since they reduce large areas to bare ground. Any chipper that violently grabs brush should not be used. Chemical control is the application of herbicide to different parts of a plant: foliar spray is applied to leaves; basal bark spray is applied to the tree trunk; a cut stump treatment is applied to the cambium ring of a cut surface. There is reluctance by many to apply herbicide into the air due to drift concerns. One-third of Iowa counties do not use foliar spray. By contrast, several accepted control methods are directed toward the ground. Freshly cut stumps should be treated to prevent resprouting. Basal bark spray is highly effective in sensitive areas such as near houses. Interest in chemical control is slowly increasing as herbicides and application methods are refined. Fall burning, a third, distinctly separate technique is underused as a brush control method and can be effective if timed correctly. In all, control methods tend to reflect agricultural patterns in a county. The use of chain saws and foliar sprays tends to increase in counties where row crops predominate, and boom mowing tends to increase in counties where grassland predominates. For counties with light to moderate roadside brush, rotational maintenance is the key to effective control. The most comprehensive approach to control is to implement an integrated roadside vegetation management (IRVM) program. An IRVM program is usually directed by a Roadside Manager whose duties may be shared with another position. Funding for control programs comes from the Rural Services Basic portion of a county's budget. The average annual county brush control budget is about $76,000. That figure is thought not to include shared expenses such as fuel and buildings. Start up costs for an IRVM program are less if an existing control program is converted. In addition, IRVM budgets from three different northeastern Iowa counties are offered for comparison in this manual. The manual also includes a chapter on temporary traffic control in rural work zones, a summary of the Iowa Code as it relates to brush control, and rules on avoiding seasonal disturbance of the endangered Indiana bat. Appendices summarize survey and forest cover data, an equipment inventory, sample forms for record keeping, a sample brush control policy, a few legal opinions, a literature search, and a glossary.
Resumo:
Previous research on pavement markings from a safety perspective tackled various issues such as pavement marking retroreflectivity variability, relationship between pavement marking retroreflectivity and driver visibility, or pavement marking improvements and safety. A recent research interest in this area has been to find a correlation between retroreflectivity and crashes, but a significant statistical relationship has not yet been found. This study investigates such a possible statistical relationship by analyzing five years of pavement marking retroreflectivity data collected by the Iowa Department of Transportation (DOT) on all state primary roads and corresponding crash and traffic data. This study developed a spatial-temporal database using measured retroreflectivity data to account for the deterioration of pavement markings over time along with statewide crash data to attempt to quantify a relationship between crash occurrence probability and pavement marking retroreflectivity. First, logistic regression analyses were done for the whole data set to find a statistical relationship between crash occurrence probability and identified variables, which are road type, line type, retroreflectivity, and traffic (vehicle miles traveled). The analysis looked into subsets of the data set such as road type, retroreflectivity measurement source, high crash routes, retroreflectivity range, and line types. Retroreflectivity was found to have a significant effect in crash occurrence probability for four data subsets—interstate, white edge line, yellow edge line, and yellow center line data. For white edge line and yellow center line data, crash occurrence probability was found to increase by decreasing values of retroreflectivity.