67 resultados para Phase-Ii
Resumo:
This report describes test results from a full-scale embankment pilot study conducted in Iowa. The intent of the pilot project was to field test and refine the proposed soil classification system and construction specifications developed in Phase II of this research and to evaluate the feasibility of implementing a contractor quality control (QC) and Iowa DOT quality assurance (QA) program for earthwork grading in the future. One of the primary questions for Phase III is “Was embankment quality improved?” The project involved a “quality conscious” contractor, well-qualified and experienced Iowa Department of Transportation field personnel, a good QC consultant technician, and some of our best soils in the state. If the answer to the above question is “yes” for this project, it would unquestionably be “yes” for other projects as well. The answer is yes, the quality was improved, even for this project, as evidenced by dynamic cone penetrometer test data and the amount of disking required to reduce the moisture content to within acceptable control limits (approximately 29% of soils by volume required disking). Perhaps as important is that we know what quality we have. Increased QC/QA field testing, however, increases construction costs, as expected. The quality management-earthwork program resulted in an additional $0.03 per cubic meter, or 1.6%, of the total construction costs. Disking added about $0.04 per cubic meter, or 1.7%, to the total project costs. In our opinion this is a nominal cost increase to improve quality. It is envisioned that future contractor innovations have the potential for negating this increase. The Phase III results show that the new soil classification system and the proposed field test methods worked well during the Iowa Department of Transportation soils design phase and during the construction phase. Recommendations are provided for future implementation of the results of this study by city, county, and state agencies.
Resumo:
With an annual pavement marking program of approximately $2 million and another $750 thousand invested in maintenance of durable markings each year, the Iowa DOT is seeking every opportunity to provide all-year markings staying in acceptable condition under all weather conditions. The goal of this study is to analyze existing pavement marking practices and to develop a prototype Pavement Marking Management System (PMMS). This report documents the first two phases of a three-phase research project. Phase I includes an overview of the Iowa DOT’s existing practices and a literature review regarding pavement marking practices in other states. Based on this information, a work plan was developed for Phases II and III of this study. Phase II organized the key components necessary to develop a prototype PMMS for the Iowa DOT. The two primary components are (1) performance/life cycle curves for pavement marking products, and (2) an application matrix tailored to the pavement marking products and roadway and environmental conditions faced by the Iowa DOT. Both components will continue to be refined and tailored to Iowa materials and conditions as more performance data becomes available.
Resumo:
Mixture materials, mix design, and pavement construction are not isolated steps in the concrete paving process. Each affects the other in ways that determine overall pavement quality and long-term performance. However, equipment and procedures commonly used to test concrete materials and concrete pavements have not changed in decades, leaving gaps in our ability to understand and control the factors that determine concrete durability. The concrete paving community needs tests that will adequately characterize the materials, predict interactions, and monitor the properties of the concrete. The overall objectives of this study are (1) to evaluate conventional and new methods for testing concrete and concrete materials to prevent material and construction problems that could lead to premature concrete pavement distress and (2) to examine and refine a suite of tests that can accurately evaluate concrete pavement properties. The project included three phases. In Phase I, the research team contacted each of 16 participating states to gather information about concrete and concrete material tests. A preliminary suite of tests to ensure long-term pavement performance was developed. The tests were selected to provide useful and easy-to-interpret results that can be performed reasonably and routinely in terms of time, expertise, training, and cost. The tests examine concrete pavement properties in five focal areas critical to the long life and durability of concrete pavements: (1) workability, (2) strength development, (3) air system, (4) permeability, and (5) shrinkage. The tests were relevant at three stages in the concrete paving process: mix design, preconstruction verification, and construction quality control. In Phase II, the research team conducted field testing in each participating state to evaluate the preliminary suite of tests and demonstrate the testing technologies and procedures using local materials. A Mobile Concrete Research Lab was designed and equipped to facilitate the demonstrations. This report documents the results of the 16 state projects. Phase III refined and finalized lab and field tests based on state project test data. The results of the overall project are detailed herein. The final suite of tests is detailed in the accompanying testing guide.
Resumo:
This Phase I report describes a preliminary evaluation of a new compaction monitoring system developed by Caterpillar, Inc. (CAT), for use as a quality control and quality assurance (QC/QA) tool during earthwork construction operations. The CAT compaction monitoring system consists of an instrumented roller with sensors to monitor machine power output in response to changes in soil machine interaction and is fitted with a global positioning system (GPS) to monitor roller location in real time. Three pilot tests were conducted using CAT’s compaction monitoring technology. Two of the sites were located in Peoria, Illinois, at the Caterpillar facilities. The third project was an actual earthwork grading project in West Des Moines, Iowa. Typical construction operations for all tests included the following steps: (1) aerate/till existing soil; (2) moisture condition soil with water truck (if too dry); (3) remix; (4) blade to level surface; and (5) compact soil using the CAT CP-533E roller instrumented with the compaction monitoring sensors and display screen. Test strips varied in loose lift thickness, water content, and length. The results of the study show that it is possible to evaluate soil compaction with relatively good accuracy using machine energy as an indicator, with the advantage of 100% coverage with results in real time. Additional field trials are necessary, however, to expand the range of correlations to other soil types, different roller configurations, roller speeds, lift thicknesses, and water contents. Further, with increased use of this technology, new QC/QA guidelines will need to be developed with a framework in statistical analysis. Results from Phase I revealed that the CAT compaction monitoring method has a high level of promise for use as a QC/QA tool but that additional testing is necessary in order to prove its validity under a wide range of field conditions. The Phase II work plan involves establishing a Technical Advisor Committee, developing a better understanding of the algorithms used, performing further testing in a controlled environment, testing on project sites in the Midwest, and developing QC/QA procedures.
Resumo:
Over-consolidation is often visible as longitudinal vibrator trails in the surface of concrete pavements constructed using slip-form paving. Concrete research and practice have shown that concrete material selection and mix design can be tailored to provide a good compaction without the need for vibration. However, a challenge in developing self-consolidating concrete for slip-form paving (SF SCC) is that the new SF SCC needs to possess not only excellent self-compactibility and stability before extrusion, but also sufficient “green” strength after extrusion, while the concrete is still in a plastic state. The SF SCC to be developed will not be as fluid as the conventional SCC, but it will (1) be workable enough for machine placement, (2) be self-compacting with minimum segregation, (3) hold shape after extrusion from a paver, and (4) have performance properties (strength and durability) compatible to current pavement concrete. The overall objective of this project is to develop a new type of SCC for slip-form paving to produce more workable concrete and smoother pavements, better consolidation of the plastic concrete, and higher rates of production. Phase I demonstrated the feasibility of designing a new type of SF SCC that can not only self-consolidate, but also have sufficient green strength. In this phase, a good balance between flowability and shape stability was achieved by adopting and modifying the mix design of self-consolidating concrete to provide a high content of fine materials in the fresh concrete. It was shown that both the addition of fine particles and the modification of the type of plasticizer significantly improve fresh concrete flowability. The mixes used in this phase were also found to have very good shape stability in the fresh state. Phase II will focus on developing a SF SCC mix design in the lab and a performing a trial of the SF SCC in the field. Phase III will include field study, performance monitoring, and technology transfer.
Resumo:
This report documents Phase III of a four-phase project. The goals of the project are to study the feasibility of using advanced technology from other industries to improve he efficiency and safety of winter highway maintenance vehicle operations, and to provide travelers with the level of service defined by policy during the winter season at the least cost to the taxpayers. The results of the first phase of the research were documented in the Concept Highway Maintenance Vehicle Final Report: Phase One dated April 1997, which describes the desirable functions of a concept maintenance vehicle and evaluates its feasibility. Phase I concluded by establishing the technologies that would be assembled and tested on the prototype vehicles in Phase II. The primary goals of phase II were to install the selected technologies on the prototype winter maintenance vehicles and to conduct proof of concept in advance of field evaluations planned for Phase III. This Phase III final report documents the work completed since the end of Phase II. During this time period, the Phase III work plan was completed and the redesigned friction meter was field tested. A vendor meeting was held to discuss future private sector participation and the new design for the Iowa vehicle. In addition, weather and roadway condition data were collected from the roadway weather information systems at selected sites in Iowa and Minnesota, for comparison to the vehicles' onboard temperature sensors. Furthermore, the team received new technology, such as the mobile Frensor unit, for bench testing and later installation.
Resumo:
The state Departments of Transportation (DOTs) of Iowa, Michigan, and Minnesota formed a consortium to define and develop the next generation highway maintenance vehicle. The Center for Transportation Research and Education of Iowa State University provided staff support to the concept highway maintenance vehicle project, which focused on winter maintenance activities. Phase I of the three-phase project focused on describing the desirable functions of a concept maintenance vehicle. Phase II will include the development, operation, and evaluation of prototype winter maintenance vehicles. Phase III is envisioned to be a comprehensive fleet evaluation of prototype winter maintenance vehicles. This report covers the activities of Phase I. Phase I included conducting a literature review of materials related to winter highway maintenance activities, identifying ideal capabilities of a winter maintenance vehicle, inviting private sector equipment and technology providers to join the project and commit equipment and expertise for Phase II, and determining the specific equipment and technology to be included on the three prototype vehicles for the winter of 1996-1997. Phase I concluded by establishing that assembling the three prototype vehicles would be beneficial to the project and to the three state DOTs.
Resumo:
Access management involves balancing the dual roles that roadways must play - through travel and access to property and economic activity. When these roles are not in proper balance, the result is a roadway system that functions sub-optimally. Arterial routes that have a too high driveway density and provide overly extensive access to property have high crash rates and begin to suffer in terms of traffic operations. Such routes become congested, delays increase, and mean travel speeds decline. The Iowa access management research and awareness project has had four distinct phases. Phase I involved a detailed review of the extensive national access management literature so lessons learned elsewhere could be applied in Iowa. In Phase II original case study research was conducted in Iowa. Phase III of the project concentrated on outreach and education about access management. Phase IV of the Iowa access management project extended the work conducted during Phases II and III. The main work products for Phase IV were as follows: 1) three additional before and after case studies, illustrating the impacts of various access management treatments on traffic safety, traffic operations, and business vitality; 2) an access management handbook aimed primarily at local governments in Iowa; 3) a modular access management toolkit with brief descriptions of various access management treatments and considerations; and 4) an extensive outreach plan aimed at getting the results of Phases I through IV of the project out to diverse audiences in Iowa and elsewhere.
Resumo:
According to the 1972 Clean Water Act, the Environmental Protection Agency (EPA) established a set of regulations for the National Pollutant Discharge Elimination System (NPDES). The purpose of these regulations is to reduce pollution of the nation’s waterways. In addition to other pollutants, the NPDES regulates stormwater discharges associated with industrial activities, municipal storm sewer systems, and construction sites. Phase II of the NPDES stormwater regulations, which went into effect in Iowa in 2003, applies to construction activities that disturb more than one acre of ground. The regulations also require certain communities with Municipal Separate Storm Sewer Systems (MS4) to perform education, inspection, and regulation activities to reduce stormwater pollution within their communities. Iowa does not currently have a resource to provide guidance on the stormwater regulations to contractors, designers, engineers, and municipal staff. The Statewide Urban Design and Specifications (SUDAS) manuals are widely accepted as the statewide standard for public improvements. The SUDAS Design manual currently contains a brief chapter (Chapter 7) on erosion and sediment control; however, it is outdated, and Phase II of the NPDES stormwater regulations is not discussed. In response to the need for guidance, this chapter was completely rewritten. It now escribes the need for erosion and sediment control and explains the NPDES stormwater regulations. It provides information for the development and completion of Stormwater Pollution Prevention Plans (SWPPPs) that comply with the stormwater regulations, as well as the proper design and implementation of 28 different erosion and sediment control practices. In addition to the design chapter, this project also updated a section in the SUDAS Specifications manual (Section 9040), which describes the proper materials and methods of construction for the erosion and sediment control practices.
Resumo:
Various test methods exist for measuring heat of cement hydration; however, most current methods require expensive equipment, complex testing procedures, and/or extensive time, thus not being suitable for field application. The objectives of this research are to identify, develop, and evaluate a standard test procedure for characterization and quality control of pavement concrete mixtures using a calorimetry technique. This research project has three phases. Phase I was designed to identify the user needs, including performance requirements and precision and bias limits, and to synthesize existing test methods for monitoring the heat of hydration, including device types, configurations, test procedures, measurements, advantages, disadvantages, applications, and accuracy. Phase II was designed to conduct experimental work to evaluate the calorimetry equipment recommended from the Phase I study and to develop a standard test procedure for using the equipment and interpreting the test results. Phase II also includes the development of models and computer programs for prediction of concrete pavement performance based on the characteristics of heat evolution curves. Phase III was designed to study for further development of a much simpler, inexpensive calorimeter for field concrete. In this report, the results from the Phase I study are presented, the plan for the Phase II study is described, and the recommendations for Phase III study are outlined. Phase I has been completed through three major activities: (1) collecting input and advice from the members of the project Technical Working Group (TWG), (2) conducting a literature survey, and (3) performing trials at the CP Tech Center’s research lab. The research results indicate that in addition to predicting maturity/strength, concrete heat evolution test results can also be used for (1) forecasting concrete setting time, (2) specifying curing period, (3) estimating risk of thermal cracking, (4) assessing pavement sawing/finishing time, (5) characterizing cement features, (6) identifying incompatibility of cementitious materials, (7) verifying concrete mix proportions, and (8) selecting materials and/or mix designs for given environmental conditions. Besides concrete materials and mix proportions, the configuration of the calorimeter device, sample size, mixing procedure, and testing environment (temperature) also have significant influences on features of concrete heat evolution process. The research team has found that although various calorimeter tests have been conducted for assorted purposes and the potential uses of calorimeter tests are clear, there is no consensus on how to utilize the heat evolution curves to characterize concrete materials and how to effectively relate the characteristics of heat evolution curves to concrete pavement performance. The goal of the Phase II study is to close these gaps.
Resumo:
The primary objective of this toolbox is to summarize various known traffic-calming treatments and their effectiveness. This toolbox focuses on roadway-based treatments for speed management, particularly for rural communities with transition zones. Education, enforcement, and policy strategies should also be considered, but are not the focus of this toolbox. The research team identified treatments based on their own research, a review of the literature, and discussion with other professionals. This toolbox describes each treatment and summarizes placement, advantages, disadvantages, effectiveness, appropriateness, and cost for each treatment. The categories of treatments covered in this toolbox are as follows: horizontal physical displacement, vertical physical displacement, narrowing, surroundings, pavement markings, traffic control signs, and other strategies. Separate 3- to 4-page Tech Briefs for various aspects of this toolbox are attached to this record: Center Islands with Raised Curbing for Rural Traffic Calming, Colored Entrance Treatments for Rural Traffic Calming, Dynamic Speed Feedback Signs for Rural Traffic Calming, Transverse Speed Bars for Rural Traffic Calming. This toolbox and the tech briefs are related to the report Evaluation of Low Cost Traffic Calming for Rural Communities – Phase II, which is also included in this record or can be found at http://publications.iowa.gov/id/eprint/14769
Resumo:
Phase II of this study further evaluated the performance of plant-produced warm-mix asphalt (WMA) mixes by conducting additional mixture performance tests at a broader range of temperatures, adding additional pavements to the study, comparing virgin and recovered binder properties, performing pavement condition surveys, and comparing survey data with the Mechanistic Empirical Pavement Design Guide (MEPDG) forecast for pavement damage over 20 years of service life. Further objectives detailing curing behavior, quality assurance testing, and hybrid technologies were as follows: * Compare the predicted and observed field performance of existing WMA trials produced in the previous Phase I study to that of hot-mix asphalt (HMA) control sections to determine if Phase I conclusions are translating to the field; * Identify any curing effect (and timing of the effect) of WMA mixtures and binders in the field; * Determine how the field-compacted mixture properties and recovered binder properties of WMA compare to those of HMA over time for technologies common to Iowa; * Identify the protocols for WMA sample preparation for volumetric and performance testing that best simulate field conditions. The findings of this study indicate that WMA additives do show statistical differences in mixture properties in some of the mixes tested. These differences will not always be statistically different from mixture to mixture. Multiple factors, such as WMA additive type, amount of recycled asphalt material, construction conditions, and mixture variability all play a role in determining the extent of which WMA and HMA mixes differ. Other significant findings of this study include effects of curing, aging in recovered binders from HMA and WMA cores, and the influence of recycled asphalt shingles (RAS) used with WMA. These findings will be of interest to owner agencies and contractors utilizing WMA technologies.
Resumo:
The Phase I research, Iowa Department of Transportation (IDOT) Project HR-214, "Feasibility Study of Strengthening Existing Single Span Steel Beam Concrete Deck Bridges," verified that post-tensioning can be used to provide strengthening of the composite bridges under investigation. Phase II research, reported here, involved the strengthening of two full-scale prototype bridges - one a prototype of the model bridge tested during Phase I and the other larger and skewed. In addition to the field work, Phase II also involved a considerable amount of laboratory work. A literature search revealed that only minimal data existed on the angle-plus-bar shear connectors. Thus, several specimens utilizing angle-plus-bar, as well as channels, studs and high strength bolts as shear connectors were fabricated and tested. To obtain additional shear connector information, the bridge model of Phase I was sawed into four composite concrete slab and steel beam specimens. Two of the resulting specimens were tested with the original shear connection, while the other two specimens had additional shear connectors added before testing. Although orthotropic plate theory was shown in Phase I to predict vertical load distribution in bridge decks and to predict approximate distribution of post-tensioning for right-angle bridges, it was questioned whether the theory could also be used on skewed bridges. Thus, a small plexiglas model was constructed and used in vertical load distribution tests and post-tensioning force distribution tests for verification of the theory. Conclusions of this research are as follows: (1) The capacity of existing shear connectors must be checked as part of a bridge strengthening program. Determination of the concrete deck strength in advance of bridge strengthening is also recommended. (2) The ultimate capacity of angle-plus-bar shear connectors can be computed on the basis of a modified AASHTO channel connector formula and an angle-to-beam weld capacity check. (3) Existing shear connector capacity can be augmented by means of double-nut high strength bolt connectors. (4) Post-tensioning did not significantly affect truck load distribution for right angle or skewed bridges. (5) Approximate post-tensioning and truck load distribution for actual bridges can be predicted by orthotropic plate theory for vertical load; however, the agreement between actual distribution and theoretical distribution is not as close as that measured for the laboratory model in Phase I. (6) The right angle bridge exhibited considerable end restraint at what would be assumed to be simple support. The construction details at bridge abutments seem to be the reason for the restraint. (7) The skewed bridge exhibited more end restraint than the right angle bridge. Both skew effects and construction details at the abutments accounted for the restraint. (8) End restraint in the right angle and skewed bridges reduced tension strains in the steel bridge beams due to truck loading, but also reduced the compression strains caused by post-tensioning.
Resumo:
This report describes the continuation of the development of performance measures for the Iowa Department of Transportation (DOT) Offices of Construction. Those offices are responsible for administering transportation construction projects for the Iowa DOT. Researchers worked closely with the Benchmark Steering Team which was formed during Phase I of this project and is composed of representatives of the Offices of Construction. The research team conducted a second survey of Offices of Construction personnel, interviewed numerous members of the Offices and continued to work to improve the eight key processes identified during Phase I of this research. The eight key processes include Inspection of Work, Resolution of Technical Issues, Documentation of Work Progress and Pay Quantities, Employee Training and Development, Continuous Feedback for Improved Contract Documents, Provide Safe Traffic Control, External/Public Communication, and Providing Pre-Letting Information. Three to four measurements were specified for each key process. Many of these measurements required opinion surveys of employees, contractors, and others. During Phase II, researchers concentrated on conducting surveys, interviewing respondents to improve future surveys, and facilitating Benchmark Steering Team monthly meetings. Much effort was placed on using the information collected during the first year's research to improve the effectiveness and efficiency of the Offices of Construction. The results from Process Improvement Teams that studied Traffic Control and Resolution of Technical Issues were used to improve operations.
Resumo:
Traffic noise monitoring using FHWA's Demonstration Projects Division Mobile Noise Laboratory at free field, single wall and parallel barrier site on I-380 in Evansdale, Iowa is described. Access to I-380 prior to its being open to traffic afforded a controlled pass-by monitoring phase involving different vehicle types. A subsequent second phase entailed identical measurement methodology to monitor "real world" I-380 traffic noise. Phase I data indicated increases in noise were significant under the parallel barrier conditions for light duty vehicles operating in the far lane. Phase II results showed that the actual I-380 traffic mix largely offset the earlier observed effect, but minor increases in traffic noise under the parallel system were noted. These differences in noise barrier system effectiveness are judged to be insignificant at this particular study location.