33 resultados para wood-plastic composite


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plastic air content is typically tested by the pressure method, ASTM C138. Loss of air content through the paver has been shown to exceed 2 percent at times. Research has shown that early deterioration of pavements in Iowa may be directly or indirectly related to low or inadequate air content. Hardened air content is typically checked using the linear traverse method, ASTM C457. The linear traverse method is very time consuming and could not be used on a production scale. A quick and effective method of testing in place air content is needed. Research has shown a high degree of correlation with the high-pressure method of determining air content of hardened concrete versus plastic air content in laboratory conditions. This research indicated that air contents are more variable when comparing core results to plastic air content, although the overall average for the air content was comparable. Perhaps, the location of the plastic air content test, obtained from construction records, versus location of the cores was not as accurate as needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contractors, engineers, owners and manufacturers want to be certain that a new product or procedure will yield beneficial results when compared to the current method of construction. The following research was conducted in order to compare the performance of epoxy coated dowel bars to dowel bars of alternative shapes and materials such as stainless steel and glass fiber reinforced polymer (GFRP). Research was also done on the effect that dowel bar spacing has on the performance of concrete pavements. Four phases of this research are described in this report.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

General equations are presented for predicting loss of prestress and camber of both composite and non- composite prestressed concrete structures. Continuous time functins of all parameters needed to solve the equations are given, and sample results included. Computed prestress loss and camber are compared with experimental data for normal weight and lightweight concrete. Methods are also presented for predicting the effect of non-prestressed tension steel in reducing time-dependent loss of prestress and camber, and for the determination of short-time deflections of uncracked and cracked prestressed members. Comparisons with experimental results are indicated for these partially prestressed methods.