84 resultados para weight maintenance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first phase of a two-phase research project was conducted to develop guidelines for Iowa transportation officials on the use of thin maintenance surfaces (TMS) for asphaltic concrete and bituminous roads. Thin maintenance surfaces are seal coats (chip seals), slurry seals, and micro-surfacing. Interim guidelines were developed to provide guidance on which roads are good candidates for TMS, when TMS should be placed, and what type of thin maintenance surface should be selected. The guidelines were developed specifically for Iowa aggregates, weather, traffic conditions, road user expectations, and transportation official expectations. In addition to interim guidelines, this report presents recommendations for phase-two research. It is recommended that test section monitoring continue and that further investigations be conducted regarding thin maintenance surface aggregate, additional test sections, placed, and a design method adopted for seal coats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years there has been renewed interest in using preventive maintenance techniques to extend pavement life and to ensure low life cycle costs for our road infrastructure network. Thin maintenance surfaces can be an important part of a preventive maintenance program for asphalt cement concrete roads. The Iowa Highway Research Board has sponsored Phase Two of this research project to demonstrate the use of thin maintenance surfaces in Iowa and to develop guidelines for thin maintenance surface uses that are specific to Iowa. This report documents the results of test section construction and monitoring started in Phase One and continued in Phase Two. The report provides a recommended seal coat design process based on the McLeod method and guidance on seal coat aggregates and binders. An update on the use of local aggregates for micro-surfacing in Iowa is included. Winter maintenance guidelines for thin maintenance surfaces are reported herein. Finally, Phase One's interim, qualitative thin maintenance surface guidelines are supplemented with Phase two's revised, quantitative guidelines. When thin maintenance surfaces are properly selected and applied, they can improve the pavement surface condition index and the skid resistance of pavements. For success to occur, several requirements must be met, including proper material selection, design, application rate, workmanship, and material compatibility, as well as favorable weather during application and curing. Specific guidance and recommendations for many types of thin maintenance surfaces and conditions are included in the report.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Iowa Department of Transportation used a high molecular weight methacrylate (HMWM) resin to seal a 3,340 ft. x 64 ft. bridge deck in October 1986. The sealing was necessary to prevent deicing salt brine from entering a substantial number of transverse cracks that coincided with the epoxy coated top steel and unprotected bottom steel. HMWM resin is a three component product composed of a monomer, a cumene hydroperoxide initiator and a cobalt naphthenate promoter. The HMWM was applied with a dual spray bar system and flat-fan nozzles. Initiated monomer delivered through one spray bar was mixed in the air with promoted monomer from the other spray bar. The application rate averaged 0.956 gallons per 100 square feet for the tined textured driving lanes. Dry sand was broadcast on the surface at an average coverage of 0.58 lbs. per square yard to maintain friction. Coring showed that the HMWM resin penetrated the cracks more than two inches deep. Testing of the treated deck yielded Friction Numbers averaging 33 with a treaded tire compared to 36 prior to treatment. An inspection soon after treatment found five leaky cracks in one of the 15 spans. One inspection during a steady rain showed no leakage, but leakage from numerous cracks occurred during a subsequent rain. A second HMWM application was made on two spans. Leakage through the double application occurred during a rain. Neither the single or double application were successful in preventing leakage through the cracks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, ultra-thin whitetopping (UTW) has evolved as a viable rehabilitation technique for deteriorated asphalt cement concrete (ACC) pavement. Numerous UTW projects have been constructed and tested, enabling researchers to identify key elements contributing to their successful performance. These elements include foundation support, the interface bonding condition, portland cement concrete (PCC) overlay thickness, synthetic fiber reinforcement usage, joint spacing, and joint sealing. The interface bonding condition is the most important of these elements. It enables the pavement to act as a composite structure, thus reducing tensile stresses and allowing an ultra-thin PCC overlay to perform as intended. Although the main factors affecting UTW performance have been identified in previous research, neither the impact that external variables have on the elements nor the element interaction have been thoroughly investigated. The objective of this research was to investigate the interface bonding condition between an ultra-thin PCC overlay and an ACC base over time, considering the previously mentioned variables. Laboratory testing and full scale field testing were planned to accomplish the research objective. Laboratory testing involved monitoring interface strains in fabricated PCC/ACC composite test beams subjected to either static or dynamic flexural loading. Variables investigated included ACC surface preparation, PCC thickness, and synthetic fiber reinforcement usage. Field testing involved monitoring PCC/ACC interface stains and temperatures, falling weight deflectometer (FWD) deflection responses, direct shear strengths, and distresses on a 7.2 mile Iowa Department of Transportation (Iowa DOT) UTW project (HR-559). The project was located on Iowa Highway 21 between Iowa Highway 212 and U.S. Highway 6 in Iowa County, near Belle Plaine, Iowa. Variables investigated included ACC surface preparation, PCC thickness, synthetic fiber reinforcement usage, joint spacing, and joint sealing. This report documents the planning, equipment selection, and construction of the project built in 1994.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Metric Training For The Highway Industry", HR-376 was designed to produce training materials for the various divisions of the Iowa DOT, local government and the highway construction industry. The project materials were to be used to introduce the highway industry in Iowa to metric measurements in their daily activities. Five modules were developed and used in training over 1,000 DOT, county, city, consultant and contractor staff in the use of metric measurements. The training modules developed deal with the planning through operation areas of highway transportation. The materials and selection of modules were developed with the aid of an advisory personnel from the highway industry. Each module is design as a four hour block of instruction and a stand along module for specific types of personnel. Each module is subdivided into four chapters with chapter one and four covering general topics common to all subjects. Chapters two and three are aimed at hands on experience for a specific group and subject. This module includes: Module 2 - Construction and Maintenance Operations and Reporting. This module provides hands on examples of applications of metric measurements in the construction and maintenance field operations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During 1986, the City of Des Moines placed an experimental asphaltic concrete overlay containing an ice-retardant additive (Verglimit) on Euclid Avenue (U.S. Highway 6). Verglimit is a chemical multi-component deicer which is added to the surface course of an asphalt overlay. The additive was uniformly distributed through the mix at the asphalt plant, which allows exposure of the particles as the finished surface wears under traffic. During a snowfall, the exposed particles attract and absorb moisture creating a deicing solution which dampens the pavement. The Verglimit additive used on this project cost $1,180 per metric ton. The Verglimit was added at a rate of 6.3% by weight, which was 126 pounds per ton, or $66.38 per ton of hot mix asphalt. The purchase of Verglimit additive was funded by the Iowa Department of Transportation through a research project recommended by the Highway Research Advisory Board. The pavement surface experienced severe wetting due to the additive's affinity for water immediately after the project was completed and during periods of high humidity. This wetting created slippery conditions both on the project itself and where vehicles tracked the additive. The only way to remove the slipperiness was by flushing the street with water. The ice-retardant overlay appears to perform as expected in reducing the adherence of ice and snow, especially at temperatures just below freezing. It performs better in light snowfalls than in heavy ones. The ice retardant overlay is effective in eliminating thin coatings of ice due to freezing drizzle or widespread frost. The accident data showed a reduction in the number of snow and ice related accidents but due to the low number of this type of accident the results are inconclusive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 1980, a Vanguard High Pressure Water Blaster capable of providing 10 gallons of water per minute at 2000 psi was purchased to evaluate water blasting as a crack cleaning method prior to crack filling on asphalt concrete pavements. Afer some iniital trials demonstrated its effectiveness of removing dirt, debris and vegetation, it was included in joint and crack maintenance research on Iowa 7 in Webster County. The objective of the research was to evaluate six crack preparation methods and seven "sealant" materials. The cleaning and sealing was performed in the spring of 1983. Visual evaluations of the performance were made in the fall of 1983 and spring of 1985. Compressed air and/or high pressure water did not adequately prepare cracks less than 3/8 inch wide. Routing or sawing was necessary to provide a sealant reservoir. The water blaster was more effective than compressed air in removing dirt, debris and vegetation but this did not yield significant improvement in sealant adhesion or longevity. Periodic crack filling is necessary on ACC surfaces throughout the remaining life of the pavement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Much of the nation's rural road system is deteriorating. Many of the roads were built in the 1880s and 1890s with the most recent upgrading done in the 1940s and 1950s. Consequently, many roads and bridges do not have the capacity for the increased loads, speed, and frequent use of today's vehicles. Because of the growing demands and a dense county road system (inherited from the land settlement policies two centuries ago), revenue available to counties is inadequate to upgrade andmaintain the present system. Either revenue must be increased - an unpopular option - or costs must be reduced. To examine cost-saving options, Iowa State University conducted a study of roads and bridges in three 100 square mile areas in Iowa: • A suburban area • A rural area with a large number of paved roads, few bridges, and a high agricultural tax base and •A more rural area in a hilly terrain with many bridges and gravel roads, and a low agricultural tax base. A cost-benefit analysis was made on the present road system in these areas on such options as abandoning roads with limited use, converting some to private drives, and reducing maintenance on these types of roads. In only a few instances does abandonment of low traffic volume roads produce cost savings for counties and abutting land owners that exceed the additional travel costs to the public. In this study, the types of roads that produced net savings when abandoned were: • A small percentage (less than 5 percent) of the nonpaved county roads in the suburban area. However, net savings were very small. Cost savings from reducing the county road system in urbanized areas are very limited. • Slightly more than 5 percent of the nonpaved county roads in the most rural area that had a small number of paved county roads. • More than 12 percent of the nonpaved roads in the rural area that had a relatively large number of paved county and state roads. Converting low-volume roads to low-maintenance or Service B roads produces the largest savings of all solutions considered. However, future bridge deterioration and county liability on Service B roads are potential problems. Converting low-volume roads to private drives also produces large net savings. Abandonment of deadend roads results in greater net savings than continuous roads. However, this strategy shifts part of the public maintenance burden to land owners. Land owners also then become responsible for accident liability. Reconstruction to bring selected bridges with weight restrictions up to legal load limits reduces large truck and tractor-wagon mileage and costs. However, the reconstruction costs exceeded the reduction in travel costs. Major sources of vehicle miles on county roads are automobiles used for household purposes and pickup truck travel for farm purposes. Farm-related travel represents a relatively small percent of total travel miles, but a relatively high percentage of total travel costs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iowa's public road system of 112,000 miles is one of the largest and the best in the nation. It represents a considerable financial investment of taxpayer revenues over the years. And, it requires a sustained investment to preserve an economical level of transport service into the future. In 1982, a Governor's Blue Ribbon Transportation Task Force evaluated the effectiveness of Iowa's entire transportation system. Four important Task Force recommendations dealt with public road administrative issues in Iowa. These issues were related to: 1. design criteria and levels of maintenance 2. consistency in the use of standards among jurisdictions 3. consolidation of maintenance operations at one jurisdictional level and 4. jurisdictional authority for roads. The issues formed the background for Research Project HR-265.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research project was directed at laboratory and field evaluation of sodium montmorillonite clay (bentonite) as a dust palliative for limestone surfaced secondary roads. It had been postulated that the electrically charged surfaces of the clay particles could interact with the charged surfaces of the limestone and act as a bonding agent to agglomerate fine (-#200) particulates and also to band the fine particulates to larger (+#200) limestone particles. Laboratory testing using soda ash dispersed bentonite treatment of limestone fines indicated significant improvement of compressive strength and slaking characteristics. It was recommended that the project proceed to field trials and test roads were constructed in Dallas and Adair counties in Iowa. Soda ash dispersed bentonite solutions can be field mixed and applied with conventional spray distribution equipment. A maximum of 1.5% bentonite(by weight of aggregate)can be applied at one time. Higher applications would have to be staged allowing the excess moisture to evaporate between applications. Construction of higher application treatments can be accomplished by adding dry bentonite to the surfacing material and then by dry road mixing. The soda ash water solution can then be spray applied and the treated surfacing material wet mixed by motor graders to a consistency of 3 to 4 inch slump concrete. Two motor graders working in tandem can provide rapid mixing for both methods of construction. Calcium and magnesium chloride treatments are 2 to 3 times more effective in dust reduction in the short term (3-4 months) but are prone to washboarding and potholing due to maintenance restrictions. Bentonite treatment at the 2-3% level is estimated to provide a 30-40% dust reduction over the long term(18-24 months). Normal maintenance blading operations can be used on bentonite treated areas. Vehicle braking characteristics are not adversely affected up to the 3.0% treatment level. The bentonite appears to be functioning as a banding agent to bind small particulates to larger particles and is acting to agglomerate fine particles of limestone. This bonding capability appears recoverable from environmental effects of winter, and from alternating wet and dry periods. The bentonite appears to be able to interact with new applications of limestone maintenance material and maintains a dust reduction capability. Soda ash dispersed bentonite treatment is approximately 10 times more cost effective per percent dust reduction than conventional chloride treatments with respect to time. However,the disadvantage is that there is not the initial dramatic reduction in dust generation as with the chloride treatment. Although dust is reduced 30-40% after treatment there is still dust being generated and the traveling public or residents may not perceive the reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research project was directed at laboratory and field evaluation of sodium montmorillonite clay (Bentonite) as a dust palliative for limestone surfaced secondary roads. It was postulated that the electrically charged surfaces (negative) of the clay particles could interact with the charged surfaces (positive) of the limestone and act as a bonding agent to agglomerate fine (-#200) particulates, and also to bond the fine particulates to larger (+#200) limestone particles. One mile test roads were constructed in Tama, Appanoose, and Hancock counties in Iowa using Bentonite treatment levels (by weight of aggregate) ranging from 3.0 to 12.0%. Construction was accomplished by adding dry Bentonite to the surfacing material and then dry road mixing. The soda ash/water solution (dispersing agent) was spray applied and the treated surfacing material wet mixed by motor graders to a consistency of 2 to 3 inch slump concrete. Two motor graders working in tandem provided rapid mixing. Following wet mixing the material was surface spread and compacted by local traffic. Quantitative and qualitative periodic evaluations and testing of the test roads was conducted with respect to dust generation, crust development, roughness, and braking characteristics. As the Bentonite treatment level increased dust generation decreased. From a cost/benefit standpoint, an optimum level of treatment is about 8% (by weight of aggregate). For roads with light traffic, one application at this treatment level resulted in a 60-70% average dust reduction in the first season, 40-50% in the second season, and 20-30% in the third season. Crust development was rated at two times better than untreated control sections. No discernible trend was evident with respect to roughness. There was no evident difference in any of the test sections with respect to braking distance and braking handling characteristics, under wet surface conditions compared to the control sections. Chloride treatments are more effective in dust reduction in the short term (3-4 months). Bentonite treatment is capable of dust reduction over the long term (2-3 seasons). Normal maintenance blading operations can be used on Bentonite treated areas. Soda ash dispersed Bentonite treatment is estimated to be more than twice as cost effective per percent dust reduction than conventional chloride treatments, with respect to time. However, the disadvantage is that there is not the initial dramatic reduction in dust generation as with the chloride treatment. Although dust is reduced significantly after treatment there is still dust being generated. Video evidence indicates that the dust cloud in the Bentonite treated sections does not rise as high, or spread as wide as the cloud in the untreated section. It also settles faster than the cloud in the untreated section. This is considered important for driving safety of following traffic, and for nuisance dust invasion of residences and residential areas. The Bentonite appears to be functioning as a bonding agent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chloride ion penetration through concrete to reinforcing steel is causing the premature deterioration of numerous bridge decks in Iowa. The purpose of the research reported in this paper was to determine whether any of several additives or alternative deicing chemicals could inhibit corrosion of reinforcing steel. The deicers tested were calcium magnesium acetate (CMA), CMA plus NaCl (NaCl: sodium chloride), Quicksalt plus PCI, and CG-90, a polyphosphate solution being developed by Cargill. Two tests were established. First, steel coupons were placed in a 15% solution of a deicer and distilled water to determine which alternative deicer would cause the least amount of corrosion in solution. The coupons were weighed periodically to determine each coupon's weight loss from corrosion. The second test involved ponding a 15% solution of each material on reinforced concrete blocks. Weekly copper-copper sulfate electrical half-cell (CSE) potential readings were taken on each block to determine whether corrosive activity was occurring at the steel surface. When the ponding research was concluded, concrete samples were taken from one of the three blocks ponded with each deicer. The samples were used to determine the chloride ion content at the level of the steel. Results show that all the deicers were less corrosive than NaCl. Only pure CMA, however, significantly inhibited the corrosion of steel embedded in concrete.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most states, including Iowa, have a significant number of substandard bridges. This number will increase significantly unless some type of preventative maintenance is employed. Both the Iowa Department of Transportation and Iowa counties have successfully employed numerous maintenance, repair and rehabilitation (MR&R) strategies for correcting various types of deficiencies. However, successfully employed MR&R procedures are often not systematically documented or defined for those involved in bridge maintenance. This study addressed the need for a standard bridge MR&R manual for Iowa with emphasis for secondary road applications. As part of the study, bridge MR&R activities that are relevant to the state of Iowa have been systematically categorized into a manual, in a standardized format. Where pertinent, design guidelines have been presented. Material presented in this manual is divided into two major categories: 1) Repair and Rehabilitation of Bridge Superstructure Components, and 2) Repair and Rehabilitation of Bridge Substructure Components. There are multiple subcategories within both major categories that provide detailed information. Some of the detailed information includes step-by-step procedures for accomplishing MR&R activities, material specifications and detailed drawings where available. The source of information contained in the manual is public domain technical literature and information provided by Iowa County Engineers. A questionnaire was sent to all 99 counties in Iowa to solicit information and the research team personally solicited input from many Iowa counties as a follow-up to the questionnaire.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report is formatted to independently present four individual investigations related to similar web gap fatigue problems. Multiple steel girder bridges commonly exhibit fatigue cracking due to out-of-plane displacement of the web near the diaphragm connections. This fatigue-prone web gap area is typically located in negative moment regions of the girders where the diaphragm stiffener is not attached to the top flange. In the past, the Iowa Department of Transportation has attempted to stop fatigue crack propagation in these steel girder bridges by drilling holes at the crack tips. Other nondestructive retrofits have been tried; in a particular case on a two-girder bridge with floor beams, angles were bolted between the stiffener and top flange. The bolted angle retrofit has failed in the past and may not be a viable solution for diaphragm bridges. The drilled hole retrofit is often only a temporary solution, so a more permanent and effective retrofit is required. A new field retrofit has been developed that involves loosening the bolts in the connection between the diaphragm and the girders. Research on the retrofit has been initiated; however, no long-term studies of the effects of bolt loosening have been performed. The intent of this research is to study the short-term effects of the bolt loosening retrofit on I-beam and channel diaphragm bridges. The research also addressed the development of a continuous remote monitoring system to investigate the bolt loosening retrofit on an X-type diaphragm bridge over a number of months, ensuring that the measured strain and displacement reductions are not affected by time and continuous traffic loading on the bridge. The testing for the first three investigations is based on instrumentation of web gaps in a negative moment region on Iowa Department of Transportation bridges with I-beam, channel, and X-type diaphragms. One bridge of each type was instrumented with strain gages and deflection transducers. Field tests, using loaded trucks of known weight and configuration, were conducted on the bridges with the bolts in the tight condition and after implementing the bolt loosening retrofit to measure the effects of loosening the diaphragm bolts. Long-term data were also collected on the X-diaphragm bridge by a data acquisition system that collected the data continuously under ambient truck loading. The collected data were retrievable by an off-site modem connection to the remote data acquisition system. The data collection features and ruggedness of this system for remote bridge monitoring make it viable as a pilot system for future monitoring projects in Iowa. Results indicate that loosening the diaphragm bolts reduces strain and out-of-plane displacement in the web gap, and that the reduction is not affected over time by traffic or environmental loading on the bridge. Reducing the strain in the web gap allows the bridge to support more cycles of loading before experiencing fatigue, thus increase the service life of the bridge. Two-girder floor beam bridges may also exhibit fatigue cracking in girder webs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The large volume of traffic on the interstate system makes it difficult to make pavement repairs. The maintenance crew needs 4-5 hours to break out the concrete to be replaced and prepare the hole for placing new concrete. Because of this it is usually noon before the patch can be placed. Since it is desirable to remove the barricades before dark there are only 7-8 hours for the concrete to reach the required strength. There exists a need for a concrete that can reach the necessary strength (modulus of rupture = 500 psi) in 7-8 hours. The purpose of this study is to determine if type III cement and/or an accelerator can be used in an M-4 mix to yield a fast setting patch with very little shrinkage. It is recognized that calcium chloride is a corrosive material and may therefore have detrimental effects upon the reinforcing steel. The study of these effects, however, is beyond the scope of this investigation.