46 resultados para respiratory distress
Resumo:
Weekly report of the Iowa Influenza Surveillance Network produced by the Iowa Department of Public Health.
Resumo:
Weekly report of the Iowa Influenza Surveillance Network produced by the Iowa Department of Public Health.
Resumo:
Weekly report of the Iowa Influenza Surveillance Network produced by the Iowa Department of Public Health.
Resumo:
Weekly report of the Iowa Influenza Surveillance Network produced by the Iowa Department of Public Health.
Resumo:
Weekly report of the Iowa Influenza Surveillance Network produced by the Iowa Department of Public Health.
Resumo:
Weekly report of the Iowa Influenza Surveillance Network produced by the Iowa Department of Public Health.
Resumo:
Weekly report of the Iowa Influenza Surveillance Network produced by the Iowa Department of Public Health.
Resumo:
Weekly report of the Iowa Influenza Surveillance Network produced by the Iowa Department of Public Health.
Resumo:
Weekly report of the Iowa Influenza Surveillance Network produced by the Iowa Department of Public Health.
Resumo:
Weekly report of the Iowa Influenza Surveillance Network produced by the Iowa Department of Public Health.
Resumo:
Weekly report of the Iowa Influenza Surveillance Network produced by the Iowa Department of Public Health.
Resumo:
The purpose of this project was to determine the feasibility of using pavement condition data collected for the Iowa Pavement Management Program (IPMP) as input to the Iowa Quadrennial Need Study. The need study, conducted by the Iowa Department of Transportation (Iowa DOT) every four years, currently uses manually collected highway infrastructure condition data (roughness, rutting, cracking, etc.). Because of the Iowa DOT's 10-year data collection cycles, condition data for a given highway segment may be up to 10 years old. In some cases, the need study process has resulted in wide fluctuations in funding allocated to individual Iowa counties from one study to the next. This volatility in funding levels makes it difficult for county engineers to plan and program road maintenance and improvements. One possible remedy is to input more current and less subjective infrastructure condition data. The IPMP was initially developed to satisfy the Intermodal Surface Transportation Efficiency Act (ISTEA) requirement that federal-aid-eligible highways be managed through a pavement management system. Currently all metropolitan planning organizations (MPOs) in Iowa and 15 of Iowa's 18 RPAs participate in the IPMP. The core of this program is a statewide data base of pavement condition and construction history information. The pavement data are collected by machine in two-year cycles. Using pilot areas, researchers examined the implications of using the automated data collected for the IPMP as input to the need study computer program, HWYNEEDS. The results show that using the IPMP automated data in HWYNEEDS is feasible and beneficial, resulting in less volatility in the level of total need between successive quadrennial need studies. In other words, the more current the data, the smaller the shift in total need.
Resumo:
Cold in-place recycling (CIR) has become an attractive method for rehabilitating asphalt roads that have good subgrade support and are suffering distress related to non-structural aging and cracking of the pavement layer. Although CIR is widely used, its use could be expanded if its performance were more predictable. Transportation officials have observed roads that were recycled under similar circumstances perform very differently for no clear reason. Moreover, a rational mix design has not yet been developed, design assumptions regarding the structural support of the CIR layer remain empirical and conservative, and there is no clear understanding of the cause-effect relationships between the choices made during the design/construction process and the resulting performance. The objective of this project is to investigate these relationships, especially concerning the age of the recycled pavement, cumulative traffic volume, support conditions, aged engineering properties of the CIR materials, and road performance. Twenty-four CIR asphalt roads constructed in Iowa from 1986 to 2004 were studied: 18 were selected from a sample of roads studied in a previous research project (HR-392), and 6 were selected from newer CIR projects constructed after 1999. This report summarizes the results of a comprehensive program of field distress surveys, field testing, and laboratory testing for these CIR asphalt roads. The results of this research can help identify changes that should be made with regard to design, material selection, and construction in order to lengthen the time between rehabilitation cycles and improve the performance and cost-effectiveness of future recycled roads.
Resumo:
This project utilized information from ground penetrating radar (GPR) and visual inspection via the pavement profile scanner (PPS) in proof-of-concept trials. GPR tests were carried out on a variety of portland cement concrete pavements and laboratory concrete specimens. Results indicated that the higher frequency GPR antennas were capable of detecting subsurface distress in two of the three pavement sites investigated. However, the GPR systems failed to detect distress in one pavement site that exhibited extensive cracking. Laboratory experiments indicated that moisture conditions in the cracked pavement probably explain the failure. Accurate surveys need to account for moisture in the pavement slab. Importantly, however, once the pavement site exhibits severe surface cracking, there is little need for GPR, which is primarily used to detect distress that is not observed visually. Two visual inspections were also conducted for this study by personnel from Mandli Communications, Inc., and the Iowa Department of Transportation (DOT). The surveys were conducted using an Iowa DOT video log van that Mandli had fitted with additional equipment. The first survey was an extended demonstration of the PPS system. The second survey utilized the PPS with a downward imaging system that provided high-resolution pavement images. Experimental difficulties occurred during both studies; however, enough information was extracted to consider both surveys successful in identifying pavement surface distress. The results obtained from both GPR testing and visual inspections were helpful in identifying sites that exhibited materials-related distress, and both were considered to have passed the proof-of-concept trials. However, neither method can currently diagnose materials-related distress. Both techniques only detected the symptoms of materials-related distress; the actual diagnosis still relied on coring and subsequent petrographic examination. Both technologies are currently in rapid development, and the limitations may be overcome as the technologies advance and mature.
Resumo:
The previous research performed laboratory experiments to measure the impacts of the curing on the indirect tensile strength of both CIR-foam and CIR-emulsion mixtures. However, a fundamental question was raised during the previous research regarding a relationship between the field moisture content and the laboratory moisture content. Therefore, during this research, both temperature and moisture conditions were measured in the field by embedding the sensors at a midpoint and a bottom of the CIR layer. The main objectives of the research are to: (1) measure the moisture levels throughout a CIR layer and (2) develop a moisture loss index to determine the optimum curing time of CIR layer before HMA overlay. To develop a set of moisture loss indices, the moisture contents and temperatures of CIR-foam and CIR-emulsion layers were monitored for five months. Based on the limited field experiment, the following conclusions are derived: 1. The moisture content of the CIR layer can be monitored accurately using the capacitance type moisture sensor. 2. The moisture loss index for CIR layers is a viable tool in determining the optimum timing for an overlay without measuring actual moisture contents. 3. The modulus back-calculated based on the deflection measured by FWD seemed to be in a good agreement with the stiffness measured by geo-gauge. 4. The geo-gauge should be considered for measuring the stiffness of CIR layer that can be used to determine the timing of an overlay. 5. The stiffness of CIR-foam layer increased as a curing time increased and it seemed to be more influenced by a temperature than moisture content. The developed sets of moisture loss indices based on the field measurements will help pavement engineers determine an optimum timing of an overlay without continually measuring moisture conditions in the field using a nuclear gauge.