72 resultados para barrier repair cost
Resumo:
Improving safety at nighttime work zones is important because of the extra visibility concerns. The deployment of sequential lights is an innovative method for improving driver recognition of lane closures and work zone tapers. Sequential lights are wireless warning lights that flash in a sequence to clearly delineate the taper at work zones. The effectiveness of sequential lights was investigated using controlled field studies. Traffic parameters were collected at the same field site with and without the deployment of sequential lights. Three surrogate performance measures were used to determine the impact of sequential lights on safety. These measures were the speeds of approaching vehicles, the number of late taper merges and the locations where vehicles merged into open lane from the closed lane. In addition, an economic analysis was conducted to monetize the benefits and costs of deploying sequential lights at nighttime work zones. The results of this study indicates that sequential warning lights had a net positive effect in reducing the speeds of approaching vehicles, enhancing driver compliance, and preventing passenger cars, trucks and vehicles at rural work zones from late taper merges. Statistically significant decreases of 2.21 mph mean speed and 1 mph 85% speed resulted with sequential lights. The shift in the cumulative speed distributions to the left (i.e. speed decrease) was also found to be statistically significant using the Mann-Whitney and Kolmogorov-Smirnov tests. But a statistically significant increase of 0.91 mph in the speed standard deviation also resulted with sequential lights. With sequential lights, the percentage of vehicles that merged earlier increased from 53.49% to 65.36%. A benefit-cost ratio of around 5 or 10 resulted from this analysis of Missouri nighttime work zones and historical crash data. The two different benefitcost ratios reflect two different ways of computing labor costs.
Resumo:
The 2011 Missouri River flooding caused significant damage to many geo-infrastructure systems including levees, bridge abutments/foundations, paved and unpaved roadways, culverts, and embankment slopes in western Iowa. The flooding resulted in closures of several interchanges along Interstate 29 and of more than 100 miles of secondary roads in western Iowa, causing severe inconvenience to residents and losses to local businesses. The main goals of this research project were to assist county and city engineers by deploying and using advanced technologies to rapidly assess the damage to geo-infrastructure and develop effective repair and mitigation strategies and solutions for use during future flood events in Iowa. The research team visited selected sites in western Iowa to conduct field reconnaissance, in situ testing on bridge abutment backfills that were affected by floods, flooded and non-flooded secondary roadways, and culverts. In situ testing was conducted shortly after the flood waters receded, and several months after flooding to evaluate recovery and performance. Tests included falling weight deflectometer, dynamic cone penetrometer, three-dimensional (3D) laser scanning, ground penetrating radar, and hand auger soil sampling. Field results indicated significant differences in roadway support characteristics between flooded and non-flooded areas. Support characteristics in some flooded areas recovered over time, while others did not. Voids were detected in culvert and bridge abutment backfill materials shortly after flooding and several months after flooding. A catalog of field assessment techniques and 20 potential repair/mitigation solutions are provided in this report. A flow chart relating the damages observed, assessment techniques, and potential repair/mitigation solutions is provided. These options are discussed for paved/unpaved roads, culverts, and bridge abutments, and are applicable for both primary and secondary roadways.
Resumo:
The main goal of the research described in this report was to evaluate countermeasures that agencies can use to reduce speeds as drivers enter rural communities located on high-speed roadways. The objectives of this study were as follows: * Identify and summarize countermeasures used to manage speeds in transition zones * Demonstrate the effectiveness of countermeasures that are practical for high- to low-speed transition zones * Acquire additional information about countermeasures that may show promise but lack sufficient evidence of effectiveness * Develop an application toolbox to assist small communities in selecting appropriate transition zones and effective countermeasures for entrances to small rural communities The team solicited small communities that were interested in participating in the Phase II study and several communities were also recommended. The treatments evaluated were selected by carefully considering traffic-calming treatments that have been used effectively in other countries for small rural communities, as well as the information gained from the first phase of the project. The treatments evaluated are as follows: * Transverse speed bars * Colored entrance treatment * Temporary island * Radar-activated speed limit sign * Speed feedback sign The toolbox publication and four focused tech briefs also cover the results of this work.
Resumo:
Soil slope instability concerning highway infrastructure is an ongoing problem in Iowa, as slope failures endanger public safety and continue to result in costly repair work. Volume I of this current study summarizes research methods and findings, while Volume II provides procedural details for incorporating into practice an infrequently-used testing technique–borehole shear tests. Volume III of this study of field investigation of fifteen slopes in Iowa demonstrates through further experimental testing how lateral forces develop along stabilizing piles to resist slope movements. Results establish the feasibility of an alternative stabilization approach utilizing small-diameter pile elements. Also, a step-by-step procedure that can be used by both state and county transportation agencies to design slope reinforcement using slender piles is documented. Initial evidence of the efficiency and cost-effectiveness of stabilizing nuisance slope failures with grouted micropiles is presented. Employment of the remediation alternative is deemed more appropriate for stabilizing shallow slope failures. Overall, work accomplished in this research study included completing a comprehensive literature review on the state of the knowledge of slope stability and slope stabilization, the preparation and performance of fourteen full-scale pile load tests, the analysis of load test results, and the documentation of a design methodology for implementing the technology into current practices of slope stabilization. Recommendations for further research include monitoring pilot studies of slope reinforcement with grouted micropiles, supplementary experimental studies, and advanced numerical studies.
Resumo:
The objective of this report is to provide Iowa county engineers and highway maintenance personnel with procedures that will allow them to efficiently and effectively interpret and repair or avoid landslides. The research provides an overview of basic slope stability analyses that can be used to diagnose the cause and effect associated with a slope failure. Field evidence for identifying active or potential slope stability problems is outlined. A survey of county engineers provided data for presenting a slope stability risk map for the state of Iowa. Areas of high risk are along the western border and southeastern portion of the state. These regions contain deep to moderately deep loess. The central portion of the state is a low risk area where the surficial soils are glacial till or thin loess over till. In this region, the landslides appear to occur predominately in backslopes along deeply incised major rivers, such as the Des Moines River, or in foreslopes. The south-central portion of the state is an area of medium risk where failures are associated with steep backslopes and improperly compacted foreslopes. Soil shear strength data compiled from the Iowa DOT and consulting engineers files are correlated with geologic parent materials and mean values of shear strength parameters and unit weights were computed for glacial till, friable loess, plastic loess and local alluvium. Statistical tests demonstrate that friction angles and unit weights differ significantly but in some cases effective stress cohesion intercept and undrained shear strength data do not. Moreover, effective stress cohesion intercept and undrained shear strength data show a high degree of variability. The shear strength and unit weight data are used in slope stability analyses for both drained and undrained conditions to generate curves that can be used for a preliminary evaluation of the relative stability of slopes within the four materials. Reconnaissance trips to over fifty active and repaired landslides in Iowa suggest that, in general, landslides in Iowa are relatively shallow [i.e., failure surfaces less than 6 ft (2 m) deep] and are either translational or shallow rational. Two foreslope and two backslope failure case histories provide additional insights into slope stability problems and repair in Iowa. These include the observation that embankment soils compacted to less than 95% relative density show a marked strength decrease from soils at or above that density. Foreslopes constructed of soils derived from shale exhibit loss of strength as a result of weathering. In some situations, multiple causes of instability can be discerned from back analyses with the slope stability program XSTABL. In areas where the stratigraphy consists of loess over till or till over bedrock, the geologic contracts act as surfaces of groundwater accumulation that contribute to slope instability.
Resumo:
The Iowa Department of Transportation is responsible for maintaining approximately 3800 bridges throughout the State. Of these bridges approximately 3200 have concrete decks. The remaining bridges have been constructed or repaired with a Portland Cement (P. C.) concrete overlay. Surveys of the overlays have indicated a growing incidence of delaminations and surface distress. The need to replace or repair the overlay may be dictated by the amount of delamination in the deck. Additionally, the concrete bridges are periodically inspected and scheduled for the appropriate rehabilitation. Part of this analysis is an assessment of the amount of delamination present in the deck. The ability to accurately and economically identify delamination in overlays and bridge decks is necessary to cost-effectively evaluate and schedule bridge rehabilitation. There are two conventional methods currently being used to detect delaminations. One is ref erred to as a chain drag method. The other a electro-mechanical sounding method (delamtect). In the chain drag method, the concrete surface is struck using a heavy chain. The inspector then listens to the sound produced as the surface is struck. The delaminated areas produce a dull sound as compared to nondelaminated areas. This procedure has proved to be very time consuming, especially when a number of small areas of delamination are present. With the · electro-mechanical method, the judgement of the inspector has been eliminated. A· device with three basic components, a tapping device, a sonic receiver, and a system of signal interpretation has been developed. This· device is wheeled along the deck and the instrument receives and interprets the acoustic signals generated by the instrument which in turn are reflected through the concrete. A recently developed method of detecting delaminations is infrared thermography. This method of detection is based on the difference in surface temperature which exists between delaminated and nondelaminated concrete under certain atmospheric conditions. The temperature difference can reach 5°C on a very sunny day where dry pavement exists. If clouds are present, or the pavement is wet, then the temperature difference between the delaminated and nondelaminated concrete will not be as great and therefore more difficult to detect. Infrared thermography was used to detect delaminations in 17 concrete bridge decks, 2 P. C. concrete overlays, and 1 section of continuously reinforced concrete pavement (CRCP) in Iowa. Thermography was selected to assess the accuracy, dependability, and potential of the infrared thermographic technique.
Resumo:
Research funds were approved for the purchase of equipment designed to proportion and inject epoxy resins into delaminated areas of bridge decks. Through investigation and refining of this process, it was anticipated that a maintenance procedure would be developed to delay spalling of bridge decks by "gluing down" delaminated areas before spalling occurred.
Resumo:
This project was initiated in 1988 to study the effectiveness of four different construction techniques for establishing a stable base on a granular surfaced roadway. After base stabilization, the roadway was then seal coated, eliminating dust problems associated with granular surfaced roads. When monies become available, the roadway can be surfaced with a more permanent structure. A 2.8 mi (4.5 km) section of the Horseshoe Road in Dubuque County was divided into four divisions for this study. This report discusses the procedures used during construction of these different divisions. Problems and possible solutions have been analyzed to better understand the capabilities of the materials and construction techniques used on the project. The project had the following results: High structural ratings and soil K factors for the BIO CAT and Consolid bases did not translate to good roadway performance; the macadam base had the best overall performance; the tensar fabric had no noticeable effect on the macadam base; and the HFE-300 performed acceptably.
Resumo:
The objectives of this research were to develop a low cost fly ash-sand stabilized roadway and to correlate field performance with pavement design assumptions on a county road heavily trafficked by trucks hauling grain. The road was constructed during the summer of 1984. Three test sections comprised of different base thicknesses were incorporated in the roadway and were tested for compressive stength, structural rating, and rut depth. Annual crack surveys showed no appreciable difference in transverse cracking between the test sections and little to no rutting. The sandbase drainage characteristics beneath the roadway may have contributed to the satisfactory performance of the test sections. This project indicates that in spite of the inflated cost of construction due to the research nature of the work, a fly ash-sand base can be a viable alternative for roadway stabilization.
Resumo:
In Iowa it is normal procedure to either use partial or full-depth patching to repair deteriorated areas of pavement prior to resurfacing. The Owens/Corning Corporation introduced a repair system to replace the patching process. Their Roadglas repair system was used in this research project on US 30 in Story County. It was installed in 1985 and has been observed annually since that time. There were some construction problems with slippage as the roller crossed the abundant Roadglas binder. It appears the Roadglas system has helped to control reflective cracking in the research areas. Since the time when this project was completed it has been reported that Owens/Corning has discontinued production of the Roadglas system.
Resumo:
Ten bridges were chosen to have their concrete barrier rails constructed with one rail having "Fibermesh" synthetic fibers added and the other rail without the fibers. The rails were constructed in 1985, 1986, or 1987. All the bridges were inspected in 1988 and no consistent reduction in cracking was achieved using Fibermesh fibers in the p.c. concrete bridge barrier rails.
Resumo:
Most states, including Iowa, have a significant number of substandard bridges. This number will increase significantly unless some type of preventative maintenance is employed. Both the Iowa Department of Transportation and Iowa counties have successfully employed numerous maintenance, repair and rehabilitation (MR&R) strategies for correcting various types of deficiencies. However, successfully employed MR&R procedures are often not systematically documented or defined for those involved in bridge maintenance. This study addressed the need for a standard bridge MR&R manual for Iowa with emphasis for secondary road applications. As part of the study, bridge MR&R activities that are relevant to the state of Iowa have been systematically categorized into a manual, in a standardized format. Where pertinent, design guidelines have been presented. Material presented in this manual is divided into two major categories: 1) Repair and Rehabilitation of Bridge Superstructure Components, and 2) Repair and Rehabilitation of Bridge Substructure Components. There are multiple subcategories within both major categories that provide detailed information. Some of the detailed information includes step-by-step procedures for accomplishing MR&R activities, material specifications and detailed drawings where available. The source of information contained in the manual is public domain technical literature and information provided by Iowa County Engineers. A questionnaire was sent to all 99 counties in Iowa to solicit information and the research team personally solicited input from many Iowa counties as a follow-up to the questionnaire.
Resumo:
Many rural communities have developed around highways or major county roads; as a result, the main street through small rural communities is often part of a high-speed rural highway. Highways and county roads are characterized by high speeds outside the city limits; they then transition into a reduced speed section through the rural community. Consequently, drivers passing through the community often enter at high speeds and maintain those speeds as they travel through the community. Traffic calming in small rural communities along major roadways is common in Europe, but the U.S. does not have experience with applying traffic-calming measures outside of major urban areas. The purpose of the project was to evaluate traffic-calming treatments on the major road through small Iowa communities using either single-measure low-cost or gateway treatments. The project was partially funded by the Iowa Highway Research Board (IHRB). The focus of the IHRB portion was to evaluate single-measure, low-cost, traffic-calming measures that are appropriate to major roads through small rural communities. Seven different low-cost traffic treatments were implemented and evaluated in five rural Iowa communities. The research evaluated the use of two gateway treatments in Union and Roland; five single-measure treatments (speed table, on-pavement “SLOW” markings, a driver speed feedback sign, tubular markers, and on-pavement entrance treatments) were evaluated in Gilbert, Slater, and Dexter.
Resumo:
This report describes the work accomplished to date on research project HR-173, A Computer Based Information System for County Equipment Cost Records, and presents the initial design for this system. The specific topics discussed here are findings from the analysis of information needs, the system specifications developed from these findings, and the proposed system design based upon the system specifications. The initial system design will include tentative input designs for capturing input data, output designs to show the output formats and the items to be output for use in decision making, file design showing the organization of information to be kept on each piece of equipment in the computer data file, and general system design explaining how the entire system will operate. The Steering Committee appointed by Iowa Highway Research Board is asked to study this report, make appropriate suggestions, and give approval to the proposed design subject to any suggestions made. This approval will permit the designer to proceed promptly with the development of the computer program implementation phase of the design.
Resumo:
This appendix is divided into three sections. The first section contains abstracts of each of the eight computer programs in the system, instructions for keypunching the three input documents, and computer operating instructions pertaining to each program. The second section contains system flowcharts for the entire system as well as program flowcharts for each program. The last section contains PL/l program listings of each program.