39 resultados para Wheel Tracker (WT) test


Relevância:

20.00% 20.00%

Publicador:

Resumo:

All noncomplying penetration and absolute viscosity results must be verified before being reported. This verification of test results is done by reheating and retesting the identical sample that is suspect. The District Laboratories are required to submit penetration and absolute viscosity correlation samples to the Central Laboratory. These samples are the identical ones tested by the District Laboratories. When the Central laboratory tests these correlation samples they are also considered to be reheated and retested. Reheating a sample will harden the asphalt to some degree and possibly cause a change in the test results. This investigation was conducted to determine how much change in penetration and absolute viscosity could be expected by reheating and retesting asphalt samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early stiffening of cement has been noted as contributing to workability problems with concrete placed in the field. Early stiffening, normally attributed to cements whose gypsum is reduced to hemi⋅hydrate or anhydrate because of high finish mill temperatures, is referred to as false setting. Stiffening attributed to uncontrolled reaction of C3A is referred to as flash set. False setting may be overcame by extended mix period, while flash setting is usually more serious and workability is usually diminished with extended mixing. ASTM C 359 has been used to detect early stiffening with mixed results. The mini slump cone test was developed by Construction Technology Laboratories (CTL), Inc., as an alternative method of determining early stiffening. This research examined the mini slump cone test procedure to determine the repeatability of the results obtained from two different testing procedures, effect of w/c ratio, lifting rate of the cone, and accuracy of the test using a standard sample.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pavements are subjected to different stresses during their design lives. A properly designed pavement will perform adequately during its design life, and the distresses will not exceed the allowable limits; however, there are several factors that can lead to premature pavement failure. One such factor is moisture sensitivity. AASHTO T 283 is the standard test used in the moisture susceptibility evaluation of asphalt mixtures, but the results of the test are not very representative of the expected behavior of asphalt mixtures. The dynamic modulus test measures a fundamental property of the mixture. The results of the dynamic modulus test can be used directly in the Mechanistic-Empirical Pavement Design Guide (MEPDG) and are considered a very good representation of the expected field performance of the mixture. Further research is still needed to study how the dynamic modulus results are affected by moisture. The flow number test was studied in previous research as a candidate test for moisture-susceptibility evaluation, but the results of that research were not favorable. This research has four main objectives. The first objective of this research is to evaluate the usefulness of the dynamic modulus and flow number tests in moisture-susceptibility evaluation. The second objective is to compare the results to those achieved using the AASHTO T 283 test. The third objective is to study the effect of different methods of sample conditioning and testing conditions. The fourth objective of the research is to study the variability in the test results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In jointed portland cement concrete pavements, dowel bars are typically used to transfer loads between adjacent slabs. A common practice is for designers to place dowel bars at a certain, consistent spacing such that a sufficient number of dowels are available to effectively transfer anticipated loads. In many cases, however, the standards developed today for new highway construction simply do not reflect the design needs of low traffic volume, rural roads. The objective of this research was to evaluate the impact of the number of dowel bars and dowel location on joint performance and ultimately on pavement performance. For this research, test sections were designed, constructed, and tested in actual field service pavement. Test sections were developed to include areas with load transfer assemblies having three and four dowels in the outer wheel path only, areas with no joint reinforcement whatsoever, and full lane dowel basket assemblies as the control. Two adjacent paving projects provided both rural and urban settings and differing base materials. This report documents the approach to implementing the study and provides discussion and suggestions based on the results of the research. The research results indicate that the use of single three or four dowel basket assemblies in the outer wheel path is acceptable for use in low truck volume roads. In the case of roadways with relatively stiff bases such as asphalt treated or stabilized bases, the use of the three dowel bar pattern in the outside wheel path is expected to provide adequate performance over the design life of the pavement. In the case of untreated or granular bases, the results indicate that the use of the three or four dowel bar basket in both wheel paths provides the best long-term solution to load transfer and faulting measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, no standard mix design procedure is available for CIR-emulsion in Iowa. The CIR-foam mix design process developed during the previous phase is applied for CIR-emulsion mixtures with varying emulsified asphalt contents. Dynamic modulus test, dynamic creep test, static creep test and raveling test were conducted to evaluate the short- and long-term performance of CIR-emulsion mixtures at various testing temperatures and loading conditions. A potential benefit of this research is a better understanding of CIR-emulsion material properties in comparison with those of CIR-foam material that would allow for the selection of the most appropriate CIR technology and the type and amount of the optimum stabilization material. Dynamic modulus, flow number and flow time of CIR-emulsion mixtures using CSS- 1h were generally higher than those of HFMS-2p. Flow number and flow time of CIR-emulsion using RAP materials from Story County was higher than those from Clayton County. Flow number and flow time of CIR-emulsion with 0.5% emulsified asphalt was higher than CIR-emulsion with 1.0% or 1.5%. Raveling loss of CIR-emulsion with 1.5% emulsified was significantly less than those with 0.5% and 1.0%. Test results in terms of dynamic modulus, flow number, flow time and raveling loss of CIR-foam mixtures are generally better than those of CIR-emulsion mixtures. Given the limited RAP sources used for this study, it is recommended that the CIR-emulsion mix design procedure should be validated against several RAP sources and emulsion types.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The previous research performed laboratory experiments to measure the impacts of the curing on the indirect tensile strength of both CIR-foam and CIR-emulsion mixtures. However, a fundamental question was raised during the previous research regarding a relationship between the field moisture content and the laboratory moisture content. Therefore, during this research, both temperature and moisture conditions were measured in the field by embedding the sensors at a midpoint and a bottom of the CIR layer. The main objectives of the research are to: (1) measure the moisture levels throughout a CIR layer and (2) develop a moisture loss index to determine the optimum curing time of CIR layer before HMA overlay. To develop a set of moisture loss indices, the moisture contents and temperatures of CIR-foam and CIR-emulsion layers were monitored for five months. Based on the limited field experiment, the following conclusions are derived: 1. The moisture content of the CIR layer can be monitored accurately using the capacitance type moisture sensor. 2. The moisture loss index for CIR layers is a viable tool in determining the optimum timing for an overlay without measuring actual moisture contents. 3. The modulus back-calculated based on the deflection measured by FWD seemed to be in a good agreement with the stiffness measured by geo-gauge. 4. The geo-gauge should be considered for measuring the stiffness of CIR layer that can be used to determine the timing of an overlay. 5. The stiffness of CIR-foam layer increased as a curing time increased and it seemed to be more influenced by a temperature than moisture content. The developed sets of moisture loss indices based on the field measurements will help pavement engineers determine an optimum timing of an overlay without continually measuring moisture conditions in the field using a nuclear gauge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This letter has been prepared as a consultation to evaluate human health impacts from manganese emissions from the Amsted Rail Company, Inc. (Griffin Wheel) facility located in Keokuk, Iowa. We understand your concern and the concern of the Keokuk community, and want you to know that the Iowa Department of Public Health’s priority is to ensure that you have the best information possible to safeguard the health of the citizens of Keokuk. That information is included in the following discussion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a result of Chang's studies, Calderon's developments, and the need for a new test procedure to determine specific physical properties of an asphalt concrete, the Iowa Highway Research Board sponsored a research project to investigate the correlation of results of the Calderon Test with the Iowa Stability Test and the Marshall and Hveem stability tests using Iowa Type A asphaltic concrete. The project was assigned to the Bituminous. Research Laboratory of Iowa State University as Project HR 80, the. Iowa Highway Research Board, and Project 442-S of the Engineering Experiment Station.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report addresses the field testing and analysis of those results to establish the behavior of the original Clive Road Bridge that carried highway traffic over Interstate 80 (I-80) in the northwest region of Des Moines, Iowa. The bridge was load tested in 1959, shortly after its construction and in 1993, just prior to its demolition. This report presents some of the results from both field tests, finite element predictions of the behavior of aluminum bridge girders, and load distribution studies.