62 resultados para Truck tractors
Resumo:
Removal of ice from roads is of the more challenging task in winter highway maintenance. The best mechanical method is to use a truck with underbody plow blade, but such equipment is not available to all agencies charged with winter maintenance operations. While counties and cities often use motor graders to scrape ice, it would be of great benefit if front mounted plows could be used effectively for ice removal. To reveal and understand the factors that influence the performance of these plows, measurement of the forces experienced by the plow blades during ice scraping is desirable. This study explores the possibility of using accelerometers to determine the forces on a front-mounted plow when scraping ice. The plow was modeled by using a dynamic approach. The forces on the plow were to be determined by the measurement of the accelerations of the plow. Field tests were conducted using an "as is" front-mounted plow instrumented with accelerometers. The results of the field tests indicate that in terms of ice removal, the front-mounted plow is not favorable equipment. The major problem in this study is that the front mounted plow was not able to cut ice, and therefore experienced no significant scraping forces. However, the use of accelerometers seems to be promising for analyzing the vibration problems of the front-mounted plow.
Resumo:
One of the more severe winter hazards is ice or compacted snow on roadways. While three methods are typically used to combat ice (salting, sanding and scraping), relatively little effort has been applied to improve methods of scraping ice from roads. In this project, a new test facility has been developed, comprising a truck with an underbody blade, which has been instrumented such that the forces to scrape ice from a pavement can be measured. A test site has been used, which is not accessible to the public, and ice covers have been sprayed onto the pavement and subsequently scraped from it, while the scraping loads have been recorded. Three different cutting edges have been tested for their ice scraping efficiency. Two of the blades are standard (one with a carbide insert, the other without) while the third blade was designed under the SHRP H-204A project. Results from the tests allowed two parameters to be identified. The first is the scraping efficiency which is the ratio of vertical to horizontal force. The lower this ratio, the more efficiently ice is being removed. The second parameter is the scraping effectiveness, which is related (in some as yet unspecified manner) to the horizontal load. The higher the horizontal load, the more ice is being scraped. The ideal case is thus to have as high a horizontal load as possible, combined with the lowest possible vertical load. Results indicate that the SHRP blade removed ice more effectively than the other two blades under equivalent conditions, and furthermore, did so with greater efficiency and thus more control. Furthermore, blade angles close to 0 deg provide for the most efficient scraping for all three blades. The study has shown that field testing of plow blades is possible in controlled situations, and that blades can be evaluated using this system. The system is available for further tests as are deemed appropriate.
Resumo:
The need to upgrade a large number of understrength and obsolete bridges in the U.S. has been well documented in the literature. Through several Iowa DOT projects, the concept of strengthening simple-span bridges by post-tensioning has been developed. The purpose of the project described in this report was to investigate the use of post-tensioning for strengthening continuous composite bridges. In a previous, successfully completed investigation, the feasibility of strengthening continuous, composite bridges by post-tensioning was demonstrated on a laboratory 1/3-scale-model bridge (3 spans: 41 ft 11 in. x 8 ft 8 in.). This project can thus be considered the implementation phase. The bridge selected for strengthening was in Pocahontas County near Fonda, Iowa, on County Road N28. With finite element analysis, a post-tensioning system was developed that required post-tensioning of the positive moment regions of both the interior and exterior beams. During the summer of 1988, the strengthening system was installed along with instrumentation to determine the bridge's response and behavior. Before and after post-tensioning, the bridge was subjected to truck loading (1 or 2 trucks at various predetermined critical locations) to determine the effectiveness of the strengthening system. The bridge, with the strengthening system in place, was inspected approximately every three months to determine any changes in its appearance or behavior. In 1989, approximately one year after the initial strengthening, the bridge was retested to identify any changes in its behavior. Post-tensioning forces were removed to reveal any losses over the one-year period. Post-tensioning was reapplied to the bridge, and the bridge was tested using the same loading program used in 1988. Except for at a few locations, stresses were reduced in the bridge the desired amount. At a few locations flexural stresses in the steel beams are still above 18 ksi, the allowable inventory stress for A7 steel. Although maximum stresses are above the inventory stress by about 2 ksi, they are about 5 ksi below the allowable operating stress; therefore, the bridge no longer needs to be load-posted.
Resumo:
The use of non-metallic load transfer and reinforcement devices for concrete highway pavements is a possible alternative to avoid corrosion problems related to the current practice of steel materials. Laboratory and field testing of highway pavement dowel bars, made of both steel and fiber composite materials, and fiber composite tie rods were carried out in this research investigation. Fatigue, static, and dynamic testing was performed on full-scale concrete pavement slabs which were supported by a simulated subgrade and which included a single transverse joint. The bahavior of the full-scale specimens with both steel and fiber composite dowels placed in the test joints was monitored during several million load cycles which simulated truck traffic at a transverse joint. Static bond tests were conducted on fiber composite tie rods to determine the required embedment length. These tests took the form of bending tests which included curvature and shear in the embedment zone and pullout tests which subjected the test specimen to axial tension only. Fiber composite dowel bars were placed at two transverse joints during construction of a new concrete highway pavement in order to evaluate their performance under actual field conditions. Fiber composite tie rods were also placed in the longitudinal joint between the two fiber composite doweled transverse joints.
Resumo:
The Phase I research, Iowa Department of Transportation (IDOT) Project HR-214, "Feasibility Study of Strengthening Existing Single Span Steel Beam Concrete Deck Bridges," verified that post-tensioning can be used to provide strengthening of the composite bridges under investigation. Phase II research, reported here, involved the strengthening of two full-scale prototype bridges - one a prototype of the model bridge tested during Phase I and the other larger and skewed. In addition to the field work, Phase II also involved a considerable amount of laboratory work. A literature search revealed that only minimal data existed on the angle-plus-bar shear connectors. Thus, several specimens utilizing angle-plus-bar, as well as channels, studs and high strength bolts as shear connectors were fabricated and tested. To obtain additional shear connector information, the bridge model of Phase I was sawed into four composite concrete slab and steel beam specimens. Two of the resulting specimens were tested with the original shear connection, while the other two specimens had additional shear connectors added before testing. Although orthotropic plate theory was shown in Phase I to predict vertical load distribution in bridge decks and to predict approximate distribution of post-tensioning for right-angle bridges, it was questioned whether the theory could also be used on skewed bridges. Thus, a small plexiglas model was constructed and used in vertical load distribution tests and post-tensioning force distribution tests for verification of the theory. Conclusions of this research are as follows: (1) The capacity of existing shear connectors must be checked as part of a bridge strengthening program. Determination of the concrete deck strength in advance of bridge strengthening is also recommended. (2) The ultimate capacity of angle-plus-bar shear connectors can be computed on the basis of a modified AASHTO channel connector formula and an angle-to-beam weld capacity check. (3) Existing shear connector capacity can be augmented by means of double-nut high strength bolt connectors. (4) Post-tensioning did not significantly affect truck load distribution for right angle or skewed bridges. (5) Approximate post-tensioning and truck load distribution for actual bridges can be predicted by orthotropic plate theory for vertical load; however, the agreement between actual distribution and theoretical distribution is not as close as that measured for the laboratory model in Phase I. (6) The right angle bridge exhibited considerable end restraint at what would be assumed to be simple support. The construction details at bridge abutments seem to be the reason for the restraint. (7) The skewed bridge exhibited more end restraint than the right angle bridge. Both skew effects and construction details at the abutments accounted for the restraint. (8) End restraint in the right angle and skewed bridges reduced tension strains in the steel bridge beams due to truck loading, but also reduced the compression strains caused by post-tensioning.
Resumo:
The unifying objective of Phases I and II of this study was to determine the feasibility of the post-tensioning strengthening method and to implement the technique on two composite bridges in Iowa. Following completion of these two phases, Phase III was undertaken and is documented in this report. The basic objectives of Phase III were further monitoring bridge behavior (both during and after post-tensioning) and developing a practical design methodology for designing the strengthening system under investigation. Specific objectives were: to develop strain and force transducers to facilitate the collection of field data; to investigate further the existence and effects of the end restraint on the post-tensioning process; to determine the amount of post-tensioning force loss that occurred during the time between the initial testing and the retesting of the existing bridges; to determine the significance of any temporary temperature-induced post-tensioning force change; and to develop a simplified design methodology that would incorporate various variables such as span length, angle-of-skew, beam spacing, and concrete strength. Experimental field results obtained during Phases II and III were compared to the theoretical results and to each other. Conclusions from this research are as follows: (1) Strengthening single-span composite bridges by post-tensioning is a viable, economical strengthening technique. (2) Behavior of both bridges was similar to the behavior observed from the bridges during field tests conducted under Phase II. (3) The strain transducers were very accurate at measuring mid-span strain. (4) The force transducers gave excellent results under laboratory conditions, but were found to be less effective when used in actual bridge tests. (5) Loss of post-tensioning force due to temperature effects in any particular steel beam post-tensioning tendon system were found to be small. (6) Loss of post-tensioning force over a two-year period was minimal. (7) Significant end restraint was measured in both bridges, caused primarily by reinforcing steel being continuous from the deck into the abutments. This end restraint reduced the effectiveness of the post-tensioning but also reduced midspan strains due to truck loadings. (8) The SAP IV finite element model is capable of accurately modeling the behavior of a post-tensioned bridge, if guardrails and end restraints are included in the model. (9) Post-tensioning distribution should be separated into distributions for the axial force and moment components of an eccentric post-tensioning force. (10) Skews of 45 deg or less have a minor influence on post-tensioning distribution. (11) For typical Iowa three-beam and four-beam composite bridges, simple regression-derived formulas for force and moment fractions can be used to estimate post-tensioning distribution at midspan. At other locations, a simple linear interpolation gives approximately correct results. (12) A simple analytical model can accurately estimate the flexural strength of an isolated post-tensioned composite beam.
Resumo:
The objectives of this research were the collection and evaluation of the data pertaining to the importance of concrete mixing time on air content and distribution, consolidation and workability for pavement construction. American Society for Testing and Materials (ASTM) standard C 94 was used to determine the significance of the mixing time on the consistency of the mix being delivered and placed on grade. Measurements of unit weight, slump, air content, retained coarse aggregate and compressive strength were used to compare the consistency of the mix in the hauling unit at the point of mixing and at the point placement. An analysis of variance was performed on the data collected from the field tests. Results were used to establish the relationship between selected mixing time and the portland cement concrete properties tested. The results were also used to define the effect of testing location (center and side of truck, and on the grade) on the concrete properties. Compressive strength test concepts were used to analyze the hardened concrete pavement strength. Cores were obtained at various locations on each project on or between vibrator locations to evaluate the variance in each sample, between locations, and mixing times. A low-vacuum scanning electron microscope (SEM) was used to study air void parameters in the concrete cores. Combining the data from these analysis thickness measurements and ride in Iowa will provide a foundation for the formulation of a performance based matrix. Analysis of the air voids in the hardened concrete provides a description of the dispersion of the cemtitious materials (specifically flyash) and air void characteristics in the pavement. Air void characteristics measured included size, shape and distribution.
Resumo:
In this study, several new cutting edges for removal of ice from the roadway were tested in a series of closed road tests. These new cutting edges consisted of a variety of serrated shapes. The study also included measurement of ice scraping forces by in-service trucks. These trucks were instrumented in a similar manner as the truck used in the closed-road tests. Results from the closed-road and in-service tests were analyzed by two parameters. The first parameter is the scraping effectiveness, which is defined as the average horizontal force experienced by a cutting edge. The amount of ice scraped from the roadway is directly proportional to the magnitude of the scraping effectiveness. Thus an increase in scraping effectiveness indicates an increase in the amount of ice being scraped from the roadway. The second parameter is force angle, which is defined as tan to the -1 power [vertical force/horizontal force]. A combination of a minimal force angle and a maximized scraping effectiveness represents a case in which the maximal amount of ice is being removed from the pavement without an exceptionally large vertical force. Results indicate that each cutting edge produced a maximal scraping effectiveness with a testing configuration of a 15 deg blade angle and a 23,000 lb. download force. Results also indicate that each cutting edge produced a minimal force angle with a testing configuration of a 15 deg blade angle and a 10,000 lb. download force. Results from the in-service trucks produced similar data and also similar trends within the data when compared to the results of the closed-road tests. This result is most important, as it suggests that the closed-road tests do provide an accurate measure of ice scraping forces for a given blade and configuration of that blade. Thus if the closed-road tests indicate that certain blades perform well, there is now excellent reason to conduct full scale tests of such blades.
Resumo:
The use of a thin bonded concrete overlay atop an older surface has been widely incorporated for pavement rehabilitation in Iowa since the early 70's. Two test sections were constructed in 1985 on county road T61 on the Monroe-Wapello County line without the use of grout as a bonding agent to determine if adequate bond could be achieved and structural capacity uncompromised. Both test sections have performed well with one section having higher bond strengths, lower roughness values, higher structural capacity, and less debonding at the joints than the other section. Overall, both ungrouted sections have performed well under substantial truck traffic with minimal surface distress. More attention should be given, however, to rectifying apparent debonding at the joints when no grout is used as a bonding agent.
Resumo:
We are depleting the once seemingly endless supply of aggregate available for concrete paving in Iowa. At the present time, some parts of our state do not have locally available aggregates of acceptable quality for portland cement concrete paving. This necessitates lengthy truck and rail hauls which frequently more than doubles the price of aggregate. In some parts of the state, the only coarse aggregates available locally are "d-cracking" in nature. Iowa's recycling projects were devised to alleviate the shortage of aggregates wherever they were found to have an economic advantage. We completed our first recycling project in 1976 on a 1.4 project in Lyon county. The data collected in this project was used to schedule two additional projects in 1977. The larger of these two projects is located in Page and Taylor county on Highway #2 and is approximately 15 miles in length. This material is to be crushed and re-used in the concrete paving, it is to be reconstructed on approximately the same alignment. The second project is part of the construction of Interstate I-680 north of council Bluffs where an existing 24 foot portland cement concrete roadway is to be recycled and used as the aggregate in the slip form econocrete subbase and the portland cement concrete shoulders.
Resumo:
The objective of this research project was to service load test a representative sample of old reinforced concrete bridges (some of them historic and some of them scheduled for demolition) with the results being used to create a database so the performance of similar bridges could be predicted. The types of bridges tested included two reinforced concrete open spandrel arches, two reinforced concrete filled spandrel arches, one reinforced concrete slab bridge, and one two span reinforced concrete stringer bridge. The testing of each bridge consisted of applying a static load at various locations on the bridges and monitoring strains and deflections in critical members. The load was applied by means of a tandem axle dump truck with varying magnitudes of load. At each load increment, the truck was stopped at predetermined transverse and longitudinal locations and strain and deflection data were obtained. The strain data obtained were then evaluated in relation to the strain values predicted by traditional analytical procedures and a carrying capacity of the bridges was determined based on the experimental data. The response of a majority of the bridges tested was considerably lower than that predicted by analysis. Thus, the safe load carrying capacities of the bridges were greater than those predicted by the analytical models, and in a few cases, the load carrying capacities were found to be three or four times greater than calculated values. However, the test results of one bridge were lower than those predicted by analysis and thus resulted in the analytical rating being reduced. The results of the testing verified that traditional analytical methods, in most instances, are conservative and that the safe load carrying capacities of a majority of the reinforced concrete bridges are considerably greater than what one would determine on the basis of analytical analysis alone. In extrapolating the results obtained from diagnostic load tests to levels greater than those placed on the bridge during the load test, care must be taken to ensure safe bridge performance at the higher load levels. To extrapolate the load test results from the bridges tested in this investigation, the method developed by Lichtenstein in NCHRP Project 12-28(13)A was used.
Resumo:
Much of the nation's rural road system is deteriorating. Many of the roads were built in the 1880s and 1890s with the most recent upgrading done in the 1940s and 1950s. Consequently, many roads and bridges do not have the capacity for the increased loads, speed, and frequent use of today's vehicles. Because of the growing demands and a dense county road system (inherited from the land settlement policies two centuries ago), revenue available to counties is inadequate to upgrade andmaintain the present system. Either revenue must be increased - an unpopular option - or costs must be reduced. To examine cost-saving options, Iowa State University conducted a study of roads and bridges in three 100 square mile areas in Iowa: • A suburban area • A rural area with a large number of paved roads, few bridges, and a high agricultural tax base and •A more rural area in a hilly terrain with many bridges and gravel roads, and a low agricultural tax base. A cost-benefit analysis was made on the present road system in these areas on such options as abandoning roads with limited use, converting some to private drives, and reducing maintenance on these types of roads. In only a few instances does abandonment of low traffic volume roads produce cost savings for counties and abutting land owners that exceed the additional travel costs to the public. In this study, the types of roads that produced net savings when abandoned were: • A small percentage (less than 5 percent) of the nonpaved county roads in the suburban area. However, net savings were very small. Cost savings from reducing the county road system in urbanized areas are very limited. • Slightly more than 5 percent of the nonpaved county roads in the most rural area that had a small number of paved county roads. • More than 12 percent of the nonpaved roads in the rural area that had a relatively large number of paved county and state roads. Converting low-volume roads to low-maintenance or Service B roads produces the largest savings of all solutions considered. However, future bridge deterioration and county liability on Service B roads are potential problems. Converting low-volume roads to private drives also produces large net savings. Abandonment of deadend roads results in greater net savings than continuous roads. However, this strategy shifts part of the public maintenance burden to land owners. Land owners also then become responsible for accident liability. Reconstruction to bring selected bridges with weight restrictions up to legal load limits reduces large truck and tractor-wagon mileage and costs. However, the reconstruction costs exceeded the reduction in travel costs. Major sources of vehicle miles on county roads are automobiles used for household purposes and pickup truck travel for farm purposes. Farm-related travel represents a relatively small percent of total travel miles, but a relatively high percentage of total travel costs.
Resumo:
This report is formatted to independently present four individual investigations related to similar web gap fatigue problems. Multiple steel girder bridges commonly exhibit fatigue cracking due to out-of-plane displacement of the web near the diaphragm connections. This fatigue-prone web gap area is typically located in negative moment regions of the girders where the diaphragm stiffener is not attached to the top flange. In the past, the Iowa Department of Transportation has attempted to stop fatigue crack propagation in these steel girder bridges by drilling holes at the crack tips. Other nondestructive retrofits have been tried; in a particular case on a two-girder bridge with floor beams, angles were bolted between the stiffener and top flange. The bolted angle retrofit has failed in the past and may not be a viable solution for diaphragm bridges. The drilled hole retrofit is often only a temporary solution, so a more permanent and effective retrofit is required. A new field retrofit has been developed that involves loosening the bolts in the connection between the diaphragm and the girders. Research on the retrofit has been initiated; however, no long-term studies of the effects of bolt loosening have been performed. The intent of this research is to study the short-term effects of the bolt loosening retrofit on I-beam and channel diaphragm bridges. The research also addressed the development of a continuous remote monitoring system to investigate the bolt loosening retrofit on an X-type diaphragm bridge over a number of months, ensuring that the measured strain and displacement reductions are not affected by time and continuous traffic loading on the bridge. The testing for the first three investigations is based on instrumentation of web gaps in a negative moment region on Iowa Department of Transportation bridges with I-beam, channel, and X-type diaphragms. One bridge of each type was instrumented with strain gages and deflection transducers. Field tests, using loaded trucks of known weight and configuration, were conducted on the bridges with the bolts in the tight condition and after implementing the bolt loosening retrofit to measure the effects of loosening the diaphragm bolts. Long-term data were also collected on the X-diaphragm bridge by a data acquisition system that collected the data continuously under ambient truck loading. The collected data were retrievable by an off-site modem connection to the remote data acquisition system. The data collection features and ruggedness of this system for remote bridge monitoring make it viable as a pilot system for future monitoring projects in Iowa. Results indicate that loosening the diaphragm bolts reduces strain and out-of-plane displacement in the web gap, and that the reduction is not affected over time by traffic or environmental loading on the bridge. Reducing the strain in the web gap allows the bridge to support more cycles of loading before experiencing fatigue, thus increase the service life of the bridge. Two-girder floor beam bridges may also exhibit fatigue cracking in girder webs.
Resumo:
In 1975, Kossuth County had 492 miles of asphalt pavements, sixty percent of which were between l5 and 20 years old. Many of these roadways were in need of rehabilitation. Normally, asphaltic resurfacing would be the procedure for correcting the pavement deterioration. There are areas within the state of Iowa which do not have Class I aggregate readily available for asphalt cement concrete paving. Kossuth County is one of those areas. The problem is typified by this project. Limestone aggregate to be incorporated into the asphalt resurfacing had to be hauled 53 miles from the quarry to the plant site. The cost of hauling good quality aggregate coupled with the increasing cost of asphalt cement encouraged Kossuth County to investigate the possibility of asphaltic pavement recycling. Another problem, possibly unique to Kossuth County, was the way the original roadways had been constructed. A good clay soil was present under 3 to 4 feet of poorer soil. In order to obtain this good clay soil for subbase construction, the roadway ditches were excavated 1 to 3 feet into the clay soil layer. The resultant roadway tops were several feet above the surrounding farm land and generally less than 26 feet wide. To bring the existing roadway up to current minimum design width, there were two choices: One was to widen the roadway by truck hauling soil and constructing new 4 to 6 foot shoulders. The cost of widening by this method averaged $36,000 per mile in 1975. The other choice was to remove the old pavement and widen the roadway by lowering the grade line. The desire to provide wider paved roadways gave Kossuth County the additional incentive needed to proceed with a pavement recycling project.
Resumo:
The use of a high range water reducer in bridge floors was initiated by an Iowa Highway Research Board project (HR-192) in 1977 for two basic reasons. One was to determine the feasibility of using a high range water reducer (HRWR) in bridge floor concrete using conventional concrete proportioning, transporting and finishing equipment. The second was to determine the performance and protective qualities against chloride intrusion of a dense concrete bridge floor by de-icing agents used on Iowa's highways during winter months. This project was basically intended to overcome some problems that developed in the original research project. The problems alluded to are the time limits from batching to finishing; use of a different type of finishing machine; need for supplemental vibration on the surface of the concrete during the screeding operation and difficulty of texturing. The use of a double oscillating screed finishing machine worked well and supplemental vibration on one of the screeds was not needed. The limit of 45 minutes from batching the concrete to placement on the deck was verified. This is a maximum when the HRWR is introduced at the batch plant. The problem of texturing was not solved completely but is similar to our problems on the dense "Iowa System" overlay used on bridge deck repair projects. This project reinforced some earlier doubts about using truck transit mixers for mixing and transporting concrete containing HRWR when introduced at the batch plant.