34 resultados para Testing Framework
Resumo:
Due to an equipment malfunction, too much sand was used in the concrete on the bridge floor placed on August 9, 1994, in Washington County, Project No. BRF-22-2(36)38-92. Freeze-thaw durability testing of cores taken from the concrete in question and the other two concretes not in question was performed. The experimental results indicate that the concrete in question is considered at least as durable and resistant to freeze-thaw damage as the concretes which are not in question. The concrete in question can be expected to function properly for the regular service life of the bridge.
Resumo:
In May 1950 a proposal for a research project was submitted to the newly formed Iowa Highway Research Board for consideration and action. This project, designated RPSl by the Board, encompassed the study, development, preparation of preliminary plans and specifications for the construction of a wheel track to be used in the accelerated testing of highway pavements. The device envisioned in the proposal was a circular track about seventy-five feet in diameter equipped with a suitable automobile-tired device to test pavements about five feet in width laid into the track under regular construction practices by small scale construction equipment. The Board, upon review, revised and expanded the basic concepts of the project. The project as revised by the Board included a study of the feasibility of developing, constructing and operating an accelerated testing track in which pavements, bases and subgrades may be laid one full lane, or at least ten feet, in width by full size construction equipment in conformity with usual construction practices. The pavements so laid are to be subjected, during test, to conditions as nearly simulating actual traffic as possible.
Resumo:
Due to frequent accidental damage to prestressed concrete (P/C) bridges caused by impact from overheight vehicles, a project was initiated to evaluate the strength and load distribution characteristics of damaged P/C bridges. A comprehensive literature review was conducted. It was concluded that only a few references pertain to the assessment and repair of damaged P/C beams. No reference was found that involves testing of a damaged bridge(s) as well as the damaged beams following their removal. Structural testing of two bridges was conducted in the field. The first bridge tested, damaged by accidental impact, was the westbound (WB) I-680 bridge in Beebeetown, Iowa. This bridge had significant damage to the first and second beams consisting of extensive loss of section and the exposure of numerous strands. The second bridge, the adjacent eastbound (EB) structure, was used as a baseline of the behavior of an undamaged bridge. Load testing concluded that a redistribution of load away from the damaged beams of the WB bridge was occurring. Subsequent to these tests, the damaged beams in the WB bridge were replaced and the bridge retested. The repaired WB bridge behaved, for the most part, like the undamaged EB bridge indicating that the beam replacement restored the original live load distribution patterns. A large-scale bridge model constructed for a previous project was tested to study the changes in behavior due to incrementally applied damage consisting initially of only concrete removal and then concrete removal and strand damage. A total of 180 tests were conducted with the general conclusion that for exterior beam damage, the bridge load distribution characteristics were relatively unchanged until significant portions of the bottom flange were removed along with several strands. A large amount of the total applied moment to the exterior beam was redistributed to the interior beam of the model. Four isolated P/C beams were tested, two removed from the Beebeetown bridge and two from the aforementioned bridge model. For the Beebeetown beams, the first beam, Beam 1W, was tested in an "as removed" condition to obtain the baseline characteristics of a damaged beam. The second beam, Beam 2W, was retrofit with carbon fiber reinforced polymer (CFRP) longitudinal plates and transverse stirrups to strengthen the section. The strengthened Beam was 12% stronger than Beam 1W. Beams 1 and 2 from the bridge model were also tested. Beam 1 was not damaged and served as the baseline behavior of a "new" beam while Beam 2 was damaged and repaired again using CFRP plates. Prior to debonding of the plates from the beam, the behavior of both Beams 1 and 2 was similar. The retrofit beam attained a capacity greater than a theoretically undamaged beam prior to plate debonding. Analytical models were created for the undamaged and damaged center spans of the WB bridge; stiffened plate and refined grillage models were used. Both models were accurate at predicting the deflections in the tested bridge and should be similarly accurate in modeling other P/C bridges. The moment fractions per beam were computed using both models for the undamaged and damaged bridges. The damaged model indicates a significant decrease in moment in the damaged beams and a redistribution of load to the adjacent curb and rail as well as to the undamaged beam lines.
Resumo:
The Federal Highway Administration (FHWA) mandated utilizing the Load and Resistance Factor Design (LRFD) approach for all new bridges initiated in the United States after October 1, 2007. To achieve part of this goal, a database for Drilled Shaft Foundation Testing (DSHAFT) was developed and reported on by Garder, Ng, Sritharan, and Roling in 2012. DSHAFT is aimed at assimilating high-quality drilled shaft test data from Iowa and the surrounding regions. DSHAFT is currently housed on a project website (http://srg.cce.iastate.edu/dshaft) and contains data for 41 drilled shaft tests. The objective of this research was to utilize the DSHAFT database and develop a regional LRFD procedure for drilled shafts in Iowa with preliminary resistance factors using a probability-based reliability theory. This was done by examining current design and construction practices used by the Iowa Department of Transportation (DOT) as well as recommendations given in the American Association of State Highway and Transportation Officials (AASHTO) LRFD Bridge Design Specifications and the FHWA drilled shaft guidelines. Various analytical methods were used to estimate side resistance and end bearing of drilled shafts in clay, sand, intermediate geomaterial (IGM), and rock. Since most of the load test results obtained from O-cell do not pass the 1-in. top displacement criterion used by the Iowa DOT and the 5% of shaft diameter for top displacement criterion recommended by AASHTO, three improved procedures are proposed to generate and extend equivalent top load-displacement curves that enable the quantification of measured resistances corresponding to the displacement criteria. Using the estimated and measured resistances, regional resistance factors were calibrated following the AASHTO LRFD framework and adjusted to resolve any anomalies observed among the factors. To illustrate the potential and successful use of drilled shafts in Iowa, the design procedures of drilled shaft foundations were demonstrated and the advantages of drilled shafts over driven piles were addressed in two case studies.