50 resultados para Soil Surveys
Resumo:
This report contains a general colored soil map of Boone County and information on the county's soil physiology, drainage and fertility. It also includes information on field experiments, rotation of crops, prevention of erosion, soil types and other vital soil information in Boone County.
Resumo:
This issue review provides an overview of funds dispersed for the soil and water conservation cost share program in the Department of Agriculture and Land Stewardship, DALS.
Resumo:
This report presents the results of a limited investigation of the use of lime as an auxiliary additive for improving the stabilization of soils with cutback asphalts. It is felt that the data obtained presents additional information on the subject of asphalt stabilization
Resumo:
The primary purposes of this investigation are: 1) To delineate flood plain deposits with different geologic and engineering properties. 2) To provide basic data necessary for any attempt at stabilizing flood plain deposits. The alluvial valley of the Missouri River adjacent to Iowa was chosen as the logical place to begin this study. The river forms the western boundary of the state for an airline distance of approximately 139 miles; and the flood plain varies from a maximum width of approximately 18 miles (Plates 2 and 3, Sheets 75 and 75L) to approximately 4 miles near Crescent, Iowa (Plate 8, Sheet 66). The area studied includes parts of Woodbury, Monona, Harrison, Pottawattamie, Mills, and Fremont counties in Iowa and parts of Dakota, Thurston, Burt, Washington, Douglas, Sarpy, Cass and Otoe counties in Nebraska. Plate l is an index map of the area under consideration.
Resumo:
In recent years, various types of organic and inorganic materials have been investigated for use as soil stabilizing agents in the construction of highways and airports. Since the properties and environmental conditions of soils vary so greatly from place to place, a stabilizing agent that is suitable for one type of soil may not be satisfactory for another. As a result, it is often desirable to evaluate several stabilizing agents under varying treatment conditions before deciding on a specific one to be used with a given soil. In addition many research programs have been initiated which investigate the effects of these stabilizing agents upon soils.
Resumo:
This report covers the construction in 1961 of the soil-cement base and related pavement structure on Iowa 37 from Soldier to Dunlap, (F-861(6), Crawford, Harrison, Monona). The report also contains an account of the experimental work performed on the same road under research project HR-75.
Resumo:
The basic purpose of this study was to determine if an expanded polystyrene insulating board could prevent subgrade freezing and thereby reduce frost heave. The insulating board was placed between a nine inch P. C. concrete slab and a frost-susceptible subgrade. In one section at the test site, selected backfill material was placed under the pavement. The P. C. pavement was later covered by asphalt surfacing. Thermocouples were installed for obtaining temperature recordings at various locations in the surfacing, concrete slab, subgrade and shoulders. This report contains graphs and illustrations showing temperature distributions for two years, as well as profile elevations and the results of moisture tests.
Resumo:
The addition of a selected self-cementing, Class C fly ash to blow sand soils improves their compacted strength greatly as opposed to the minimal strength improvement when fly ash is mixed with loess soil. By varying the percentage of fly ash added, the resulting blow sand-fly ash mixture can function as a low strength stabilized material or as a higher strength sub-base. Low strength stabilized material can also be obtained by mixing loess soils with a selected Class C fly ash. The development of the higher strength values required for subbase materials is very dependent upon compaction delay time and moisture condition of the material. Results at this time indicate that, when compaction delays are involved, excess moisture in the material has the greatest positive effect in achieving minimum strengths. Other added retarding agents, such as borax and gypsum, have less effect.
Resumo:
The Consolid System by American Consolid Inc. is a three product system that, according to product literature, "enables any soil, found anywhere, to be upgraded to achieve better characteristics necessary in improving road life and quality". Consolid was evaluated along with mixes of cement-fly ash and hydrated lime on two soils. The soils were an A-2-4(0) with zero plasticity index and an A-7-8(18) with a 31 plasticity index. American Consolid Inc. recommended an application rate of 0.10% Consolid 444 and 1.00% Conservex by dry soil weight. The application rate chosen for cement-fly ash was 5% cement and 15% fly ash and for hydrated lime it was 6.5%. Testing involved triaxial testing of specimens after water soaking, unconfined compressive strength of specimens before and after water soaking, and freeze and thaw testing of specimens after water soaking. All specimens were compacted to standard proctor at optimum moisture. The cement-fly ash treated mixes had the highest strength and durability followed by the hydrated lime treated mixes.
Resumo:
Trenchless technologies are methods used for the construction and rehabilitation of underground utility pipes. These methods are growing increasingly popular due to their versatility and their potential to lower project costs. However, the use of trenchless technologies in Iowa and their effects on surrounding soil and nearby structures has not been adequately documented. Surveys of and interviews with professionals working in trenchless-related industries in Iowa were conducted, and the results were analyzed and compared to survey results from the United States as a whole. The surveys focused on method familiarity, pavement distress observed, reliability of trenchless methods, and future improvements. Results indicate that the frequency of pavement distress or other trenchless-related issues are an ongoing problem in the industry. Inadequate soil information and quality control/quality assurance (QC/QA) are partially to blame. Fieldwork involving the observation of trenchless construction projects was undertaken with the purpose of documenting current practices and applications of trenchless technology in the United States and Iowa. Field tests were performed in which push-in pressure cells were used to measure the soil stresses induced by trenchless construction methods. A program of laboratory soil testing was carried out in conjunction with the field testing. Soil testing showed that the installations were made in sandy clay or well-graded sand with silt and gravel. Pipes were installed primarily using horizontal directional drilling with pipe diameters from 3 to 12 inches. Pressure cell monitoring was conducted during the following construction phases: pilot bore, pre-reaming, and combined pipe pulling and reaming. The greatest increase in lateral earth pressure was 5.6 psi and was detected 2.1 feet from the centerline of the bore during a pilot hole operation in sandy lean clay. Measurements from 1.0 to 2.5 psi were common. Comparisons were made between field measurements and analytical and finite element calculation methods.
Resumo:
Soil treated with self-cementing fly ash is increasingly being used in Iowa to stabilize fine-grained pavement subgrades, but without a complete understanding of the short- and long-term behavior. To develop a broader understanding of fly ash engineering properties, mixtures of five different soil types, ranging from ML to CH, and several different fly ash sources (including hydrated and conditioned fly ashes) were evaluated. Results show that soil compaction characteristics, compressive strength, wet/dry durability, freeze/thaw durability, hydration characteristics, rate of strength gain, and plasticity characteristics are all affected by the addition of fly ash. Specifically, Iowa selfcementing fly ashes are effective at stabilizing fine-grained Iowa soils for earthwork and paving operations; fly ash increases compacted dry density and reduces the optimum moisture content; strength gain in soil-fly ash mixtures depends on cure time and temperature, compaction energy, and compaction delay; sulfur contents can form expansive minerals in soil–fly ash mixtures, which severely reduces the long-term strength and durability; fly ash increases the California bearing ratio of fine-grained soil–fly ash effectively dries wet soils and provides an initial rapid strength gain; fly ash decreases swell potential of expansive soils; soil-fly ash mixtures cured below freezing temperatures and then soaked in water are highly susceptible to slaking and strength loss; soil stabilized with fly ash exhibits increased freeze-thaw durability; soil strength can be increased with the addition of hydrated fly ash and conditioned fly ash, but at higher rates and not as effectively as self-cementing fly ash. Based on the results of this study, three proposed specifications were developed for the use of self-cementing fly ash, hydrated fly ash, and conditioned fly ash. The specifications describe laboratory evaluation, field placement, moisture conditioning, compaction, quality control testing procedures, and basis of payment.
Resumo:
To provide insight into subgrade non-uniformity and its effects on pavement performance, this study investigated the influence of non-uniform subgrade support on pavement responses (stress and deflection) that affect pavement performance. Several reconstructed PCC pavement projects in Iowa were studied to document and evaluate the influence of subgrade/subbase non-uniformity on pavement performance. In situ field tests were performed at 12 sites to determine the subgrade/subbase engineering properties and develop a database of engineering parameter values for statistical and numerical analysis. Results of stiffness, moisture and density, strength, and soil classification were used to determine the spatial variability of a given property. Natural subgrade soils, fly ash-stabilized subgrade, reclaimed hydrated fly ash subbase, and granular subbase were studied. The influence of the spatial variability of subgrade/subbase on pavement performance was then evaluated by modeling the elastic properties of the pavement and subgrade using the ISLAB2000 finite element analysis program. A major conclusion from this study is that non-uniform subgrade/subbase stiffness increases localized deflections and causes principal stress concentrations in the pavement, which can lead to fatigue cracking and other types of pavement distresses. Field data show that hydrated fly ash, self-cementing fly ash-stabilized subgrade, and granular subbases exhibit lower variability than natural subgrade soils. Pavement life should be increased through the use of more uniform subgrade support. Subgrade/subbase construction in the future should consider uniformity as a key to long-term pavement performance.
Resumo:
Reflective cracks form in pavements when hot-mix asphalt (HMA) overlays are placed over jointed and/or severely cracked rigid and flexible pavements. In the first part of the research, survival analysis was conducted to identify the most appropriate rehabilitation method for composite pavements and to evaluate the influence of different factors on reflective crack development. Four rehabilitation methods, including mill and fill, overlay, heater scarification (SCR), and rubblization, were analyzed using three performance indicators: reflective cracking, international roughness index (IRI), and pavement condition index (PCI). It was found that rubblization can significantly retard reflective cracking development compared to the other three methods. No significant difference for PCI was seen among the four rehabilitation methods. Heater scarification showed the lowest survival probability for both reflective cracking and IRI, while an overlay resulted in the poorest overall pavement condition based on PCI. In addition, traffic level was found not to be a significant factor for reflective cracking development. An increase in overlay thickness can significantly delay the propagation of reflective cracking for all four treatments. Soil types in rubblization pavement sites were assessed, and no close relationship was found between rubblized pavement performance and subgrade soil condition. In the second part of the research, the study objective was to evaluate the modulus and performance of four reflective cracking treatments: full rubblization, modified rubblization, crack and seat, and rock interlayer. A total of 16 pavement sites were tested by the surface wave method (SWM), and in the first four sites both falling weight deflectometer (FWD) and SWM were conducted for a preliminary analysis. The SWM gave close concrete layer moduli compared to the FWD moduli on a conventional composite pavement. However, the SWM provided higher moduli for the rubblized concrete layer. After the preliminary analysis, another 12 pavement sites were tested by the SWM. The results showed that the crack and seat method provided the highest moduli, followed by the modified rubblization method. The full rubblization and the rock interlayer methods gave similar, but lower, moduli. Pavement performance surveys were also conducted during the field study. In general, none of the pavement sites had rutting problems. The conventional composite pavement site had the largest amount of reflective cracking. A moderate amount of reflective cracking was observed for the two pavement sites with full rubblization. Pavements with the rock interlayer and modified rubblization treatments had much less reflective cracking. It is recommended that use of the modified rubblization and rock interlayer treatments for reflective cracking mitigation are best.
Resumo:
Annual report of soil conservation in Iowa.
Resumo:
Annual report of soil conservation in Iowa.