369 resultados para Pavement recycling
Resumo:
The members of the Iowa Concrete Paving Association, the National Concrete Pavement Technology Center Research Committee, and the Iowa Highway Research Board commissioned a study to examine alternative ways of developing transverse joints in portland cement concrete pavements. The present study investigated six separate variations of vertical metal strips placed above and below the dowels in conventional baskets. In addition, the study investigated existing patented assemblies and a new assembly developed in Spain and used in Australia. The metal assemblies were placed in a new pavement and allowed to stay in place for 30 days before the Iowa Department of Transportation staff terminated the test by directing the contractor to saw and seal the joints. This report describes the design, construction, testing, and conclusions of the project.
Resumo:
Highway noise is one of the most pressing of the surface characteristics issues facing the concrete paving industry. This is particularly true in urban areas, where not only is there a higher population density near major thoroughfares, but also a greater volume of commuter traffic (Sandberg and Ejsmont 2002; van Keulen 2004). To help address this issue, the National Concrete Pavement Technology Center (CP Tech Center) at Iowa State University (ISU), Federal Highway Administration (FHWA), American Concrete Pavement Association (ACPA), and other organizations have partnered to conduct a multi-part, seven-year Concrete Pavement Surface Characteristics Project. This document contains the results of Part 1, Task 2, of the ISU-FHWA project, addressing the noise issue by evaluating conventional and innovative concrete pavement noise reduction methods. The first objective of this task was to determine what if any concrete surface textures currently constructed in the United States or Europe were considered quiet, had long-term friction characteristics, could be consistently built, and were cost effective. Any specifications of such concrete textures would be included in this report. The second objective was to determine whether any promising new concrete pavement surfaces to control tire-pavement noise and friction were in the development stage and, if so, what further research was necessary. The final objective was to identify measurement techniques used in the evaluation.
Resumo:
Other Audit Reports - 28E Organizations
Resumo:
In recent years, thin whitetopping has evolved as a viable rehabilitation technique for deteriorated asphalt cement concrete (ACC) pavements. Numerous projects have been constructed and tested, allowing researchers to identify the important elements contributing to the projects’ successes. These elements include surface preparation, overlay thickness, synthetic fiber reinforcement usage, joint spacing, and joint sealing. Although the main factors affecting thin whitetopping performance have been identified by previous research, questions still existed as to the optimum design incorporating these variables. The objective of this research is to investigate the interaction between these variables over time. Laboratory testing and field testing were conducted to achieve the research objectives. Laboratory testing involved shear testing of the bond between the portland cement concrete (PCC) overlay and the ACC surface. Field testing involved falling weight deflectometer deflection responses, measurement of joint faulting and joint opening, and visual distress surveys on the 9.6-mile project. The project was located on Iowa Highway 13 extending north from the city of Manchester, Iowa, to Iowa Highway 3 in Delaware County. Variables investigated include ACC surface preparation, PCC thickness, slab size, synthetic fiber reinforcement usage, and joint spacing. This report documents the planning, construction, and performance of each variable in the time period from summer 2002 through spring 2006. The project has performed well with only minor distress identification since its construction.
Resumo:
Surface characteristics represent a critical issue facing pavement owners and the concrete paving industry. The traveling public has come to expect smoother, quieter, and better drained pavements, all without compromising safety. The overall surface characteristics issues is extremely complex since all pavement surface characteristics properties, including texture, noise, friction, splash/spray, rolling resistance, reflectivity/illuminance, and smoothness, are complexly related. The following needs and gaps related to achieving desired pavement surface characteristics need to be addressed: determined how changes in one surface characteristic affect, either beneficially or detrimentally, other characteristics of the pavement, determine the long-term surface and acoustic durability of different textures, and develop, evaluate, and standardize new data collection and analysis tools. It is clear that an overall strategic and coordinated research approach to the problem must be developed and pursued to address these needs and gaps.
Resumo:
At the heart of all concrete pavement projects is the concrete itself. This manual is intended as both a training tool and a reference to help concrete paving engineers, quality control personnel, specifiers, contractors, suppliers, technicians, and tradespeople bridge the gap between recent research and practice regarding optimizing the performance of concrete for pavements. Specifically, it will help readers do the following:
Resumo:
A vehicle may leave its travel lane for a number of reasons, such as driver error, poor surface conditions, or avoidance of a collision with another vehicle in the travel lane. When a vehicle leaves the travel lane, pavement edge drop-off poses a potential safety hazard because significant vertical differences between surfaces can affect vehicle stability and reduce a driver’s ability to handle the vehicle. Numerous controlled studies have tested driver response to encountering drop-offs under various conditions, including different speeds, vehicle types, drop-off height and shape, and tire scrubbing versus non-scrubbing conditions. The studies evaluated the drivers’ ability to return to and recover within their own travel lane after leaving the roadway and encountering a drop-off. Many of these studies, however, have used professional drivers as test subjects, so results may not always apply to the population of average drivers. Furthermore, test subjects are always briefed on what generally is to be expected and how to respond; thus, the sense of surprise that a truly naïve driver may experience upon realizing that one or two of his or her tires have just dropped off the edge of the pavement, is very likely diminished. Additionally, the studies were carried out under controlled conditions. The actual impact of pavement edge drop-off on drivers’ ability to recover safely once they leave the roadway, however, is not well understood under actual driving conditions. Additionally, little information is available that quantifies the number or severity of crashes that occur where pavement edge drop-off may have been a contributing factor. Without sufficient information about the frequency of edge drop-off-related crashes, agencies are not fully able to measure the economic benefits of investment decisions, evaluate the effectiveness of different treatments to mitigate edge drop-off, or focus maintenance resources. To address these issues, this report details research to quantify the contribution of pavement edge drop-off to crash frequency and severity. Additionally, the study evaluated federal and state guidance in sampling and addressing pavement edge drop-off and quantified the extent of pavement edge drop-off in two states. This study focused on rural two-lane paved roadways with unpaved shoulders, since they are often high speed facilities (55+ mph), have varying levels of maintenance, and are likely to be characterized by adverse roadway conditions such as narrow lanes or no shoulders.
Resumo:
Audit report on the Adair County Sanitary Landfill and Recycling Center for the year ended June 30, 2007
Resumo:
Audit report on the Adair County Sanitary Landfill and Recycling Center for the year ended June 30, 2008
Resumo:
Iowa is one of the more progressive recycling states in the U.S. due in large part to its environmental technical assistance programs for business. The Iowa Department of Economic Development (IDED), Iowa Department of Natural Resources (IDNR), the Recycle Reuse Technology Transfer Center (RRTTC) and the Iowa Waste Reduction Center (IWRC) work together to offer services that help businesses save money, increase operational efficiencies, enhance regulatory compliance and manage difficult waste management issues.
Resumo:
Iowa is one of the more progressive recycling states in the U.S. due in large part to its environmental technical assistance programs for business. The Iowa Department of Economic Development (IDED), Iowa Department of Natural Resources (IDNR), the Recycle Reuse Technology Transfer Center (RRTTC) and the Iowa Waste Reduction Center (IWRC) work together to offer services that help businesses save money, increase operational efficiencies, enhance regulatory compliance and manage difficult waste management issues.
Resumo:
The measurement of pavement roughness has been the concern of highway engineers for more than 70 years. This roughness is referred to as "riding quality" by the traveling public. Pavement roughness evaluating devices have attempted to place either a graphical or numerical value on the public's riding comfort or discomfort. Early graphical roughness recorders had many different designs. In 1900 an instrument called the "Viagraph" was developed by an Irish engineer.' The "Viagraph" consisted of a twelve foot board with graphical recorder drawn over the pavement. The "Profilometer" built in Illinois in 1922 was much more impressive. ' The instrument's recorder was mounted on a frame supported by 32 bicycle wheels mounted in tandem. Many other variations of profilometers with recorders were built but most were difficult to handle and could not secure uniformly reproducible results. The Bureau of Public Roads (BPR) Road Roughness Indicator b u i l t in 1941 is the most widely used numerical roughness recorder.' The BPR Road Roughness Indicator consists of a trailer unit with carefully selected springs, means of dampening, and balanced wheel.
Resumo:
Previous research on pavement markings from a safety perspective tackled various issues such as pavement marking retroreflectivity variability, relationship between pavement marking retroreflectivity and driver visibility, or pavement marking improvements and safety. A recent research interest in this area has been to find a correlation between retroreflectivity and crashes, but a significant statistical relationship has not yet been found. This study investigates such a possible statistical relationship by analyzing five years of pavement marking retroreflectivity data collected by the Iowa Department of Transportation (DOT) on all state primary roads and corresponding crash and traffic data. This study developed a spatial-temporal database using measured retroreflectivity data to account for the deterioration of pavement markings over time along with statewide crash data to attempt to quantify a relationship between crash occurrence probability and pavement marking retroreflectivity. First, logistic regression analyses were done for the whole data set to find a statistical relationship between crash occurrence probability and identified variables, which are road type, line type, retroreflectivity, and traffic (vehicle miles traveled). The analysis looked into subsets of the data set such as road type, retroreflectivity measurement source, high crash routes, retroreflectivity range, and line types. Retroreflectivity was found to have a significant effect in crash occurrence probability for four data subsets—interstate, white edge line, yellow edge line, and yellow center line data. For white edge line and yellow center line data, crash occurrence probability was found to increase by decreasing values of retroreflectivity.
Resumo:
This study explores the statistical relationship between crash occurrence probability and longitudinal pavement marking retroreflectivity. Problem Statement Previous research on pavement markings, from a safety perspective, tackled various issues, such as pavement marking retroreflectivity variability, relationship between pavement marking retroreflectivity and driver visibility, and pavement marking improvements and safety. A recent research interest in this area is to find a correlation between retroreflectivity and crashes, as a significant statistical relationship is undefined to date.
Resumo:
With the support of the Iowa Fly Ash Affiliates, research on reclaimed fly ash for use as a construction material has been ongoing since 1991. The material exhibits engineering properties similar to those of soft limestone or sandstone and a lightweight aggregate. It is unique in that it is rich in calcium, silica, and aluminum and exhibits pozzolanic properties (i.e. gains strength over time) when used untreated or when a calcium activator is added. Reclaimed Class C fly ashes have been successfully used as a base material on a variety of construction projects in southern and western Iowa. A pavement design guide has been developed with the support of the Iowa Fly Ash Affiliates. Soils in Iowa generally rate fair to poor as subgrade soils for paving projects. This is especially true in the southern quarter of the state and for many areas of eastern and western Iowa. Many of the soil types encountered for highway projects are unsuitable soils under the current Iowa DOT specifications. The bulk of the remaining soils are Class 10 soils. Select soils for use directly under the pavement are often difficult to find on a project, and in many instances are economically unavailable. This was the case for a 4.43-mile grading (STP-S- 90(22)-SE-90) and paving project in Wapello County. The project begins at the Alliant Utilities generating station in Chillicothe, Iowa, and runs west to the Monroe-Wapello county line. This road carries a significant amount of truck traffic hauling coal from the generating station to the Cargill corn processing plant in Eddyville, Iowa. The proposed 10-inch Portland Cement Concrete (PCC) pavement was for construction directly on a Class 10 soil subgrade, which is not a desirable condition if other alternatives are available. Wapello County Engineer Wendell Folkerts supported the use of reclaimed fly ash for a portion of the project. Construction of about three miles of the project was accomplished using 10 inches of reclaimed fly ash as a select fill beneath the PCC slab. The remaining mile was constructed according to the original design to be used as a control section for performance monitoring. The project was graded during the summers of 1998 and 1999. Paving was completed in the fall of 1999. This report presents the results of design considerations and laboratory and field testing results during construction. Recommendations for use of reclaimed fly ash as a select fill are also presented.