40 resultados para Mid-air collisions
Resumo:
Major highway concrete pavements in Iowa have exhibited premature deterioration attributed to effects of ettringite formation, alkali-silica expansive reactions, and to frost attack, or some combination of them. These pavements were constructed in the mid- 1980s as non-reinforced, dual-lane, roads ranging in thickness between 200 mm and 300 mm, with skewed joints reinforced with dowels. Deterioration was initially recognized with a darkening of joint regions, which occurred for some pavements as soon as four years after construction. Pavement condition ranges from severe damage to none, and there appeared to be no unequivocal materials or processing variables correlated with failure. Based upon visual examinations, petrographic evaluation, and application of materials models, the deterioration of concrete highway pavements in Iowa appear related to a freeze-thaw failure of the coarse aggregate and the mortar. Crack patterns sub-parallel to the concrete surface transecting the mortar fraction and the coarse aggregate are indicative of freeze-thaw damage of both the mortar and aggregate. The entrained air void system was marginal to substandard, and filling of some of the finer-sized voids by ettringite appears to have further degraded the air void system. The formation of secondary ettringite within the entrained air voids probably reflects a relatively high degree of concrete saturation causing the smaller voids to be filled with pore solution when the concrete freezes. Alkali-silica reaction (ASR) affects some quartz and shale in the fine aggregate, but is not considered to be a significant cause of the deterioration. Delayed ettringite formation was not deemed likely as no evidence of a uniform paste expansion was observed. The lack of field-observed expansion is also evidence against the ASR and DEF modes of deterioration. The utilization of fly ash does not appear to have affected the deterioration as all pavements with or without fly ash exhibiting substantial damage also exhibit significant filling of the entrained air void system, and specimens containing fly ash from sound pavements do not have significant filling. The influence of the mixture design, mixing, and placing must be evaluated with respect to development of an adequate entrained air void system, concrete homogeneity, longterm drying shrinkage, and microcracking. A high-sand mix may have contributed to the difficult mixture characteristics noted upon placement and exacerbate concrete heterogeneity problems, difficulty in developing an adequate entrained air void system, poor consolidation potential, and increased drying shrinkage and cracking. Finally, the availability of moisture must also be considered, as the secondary precipitation of ettringite in entrained air voids indicates they were at least partially filled with pore solution at times. Water availability at the base of the slabs, in joints, and cracks may have provided a means for absorbing water to a point of critical saturation.
Resumo:
Portland cement concrete pavements have given excellent service history for Iowa. Many of these pavements placed during the 1920’s and 1930’s are still in service today. Many factors go in to achieve a long term durable concrete pavement. Probably the most important is the durability of the aggregate. Until the 1930’s, pit run gravel was the most predominant aggregate used. Many of these gravels provided long term performance and their durability is dependent upon the carbonate fraction of the gravel. Later, limestone (calcium carbonate) and dolomite (calcium, magnesium carbonate) sources were mined across Iowa. The durability of these carbonate aggregates is largely dependent upon the pore system which can cause freeze thaw problems known as D-cracking, which was a problem with some sources during the 1960’s. Also, some of these carbonate aggregates are also susceptible to deterioration from deicing salts. Geologists have identified the major components that affect the durability of these carbonate aggregates and sources are tested to ensure long term performance in Portland cement concrete. Air entrainment was originally put in concrete to improve scaling resistance. It is well known that air entrainment is required to provide freeze thaw protection in concrete pavements today. In Iowa, air entrainment was not introduced in concrete pavements until 1952. This research investigates properties that made older concrete pavements durable without air entrainment.
Resumo:
Plastic air content is typically tested by the pressure method, ASTM C138. Loss of air content through the paver has been shown to exceed 2 percent at times. Research has shown that early deterioration of pavements in Iowa may be directly or indirectly related to low or inadequate air content. Hardened air content is typically checked using the linear traverse method, ASTM C457. The linear traverse method is very time consuming and could not be used on a production scale. A quick and effective method of testing in place air content is needed. Research has shown a high degree of correlation with the high-pressure method of determining air content of hardened concrete versus plastic air content in laboratory conditions. This research indicated that air contents are more variable when comparing core results to plastic air content, although the overall average for the air content was comparable. Perhaps, the location of the plastic air content test, obtained from construction records, versus location of the cores was not as accurate as needed.
Resumo:
The aim of the present study is to investigate the effect of low-permeability concrete, made with reduced water‐to‐binder ratios (w/b) and/or supplementary cementitious materials (SCMs), on the need for air entrainment to achieve freezing‐thawing (F‐T) durability. In the present study, concrete mixes were made with different types of cement (Types I and IP), with or without fly ash replacement (15%), with different water‐to‐binder ratios (w/b =0.25, 0.35, 0.45 and 0.55), and with or without air entraining agent (AEA). All concrete mixtures were controlled to have a similar slump by using different dosages of superplasticizer. The rapid chloride permeability and F-T durability of the concrete samples were determined according to ASTM C1202 and ASTM C666A, respectively. The air void structure of the concrete was studied using the Air Void Analyzer, RapidAir, and porosity tests (ASTM C642). In addition, the general concrete properties, such as slump, air content, unit weight, and 28‐day compressive strength, were evaluated. The results indicate that all concrete mixes with proper air entrainment (ASTM C231 air content ≥ 6%) showed good F‐T resistance (durability factor ≥85%). All concrete mixes without AEA showed poor F‐T resistance (durability factor < 40%), except for one mix that had very low permeability and high strength. This was the concrete made with Type IP cement and with a w/b of 0.25, which had a permeability of 520 coulombs and a compressive strength of 12,760 psi (88 MPa). There were clear relationships between the F‐T durability and hardened concrete properties of non–air entrained concrete. However, such relationships did not exist in concrete with AEA. For concrete with AEA, good F‐T durability was associated with an air void spacing factor ≤ 0.28 mm (by AVA) or ≤ 0.22 mm (by RapidAir).
Resumo:
A health consultation is a verbal or written response from ATSDR or ATSDR’s Cooperative Agreement Partners to a specific request for information about health risks related to a specific site, a chemical release, or the presence of hazardous material. In order to prevent or mitigate exposures, a consultation may lead to specific actions, such as restricting use of or replacing water supplies; intensifying environmental sampling; restricting site access; or removing the contaminated material. In addition, consultations may recommend additional public health actions, such as conducting health surveillance activities to evaluate exposure or trends in adverse health outcomes; conducting biological indicators of exposure studies to assess exposure; and providing health education for health care providers and community members. This concludes the health consultation process for this site, unless additional information is obtained by ATSDR or ATSDR’s Cooperative Agreement Partner which, in the Agency’s opinion, indicates a need to revise or append the conclusions previously issued.
Resumo:
The U.S. Environmental Protection Agency (EPA), the Alcoa – Davenport Works Facility (Alcoa), and concerned citizens and community leaders of Riverdale, Iowa requested the Iowa Department of Public Health (IDPH) Hazardous Waste Site Health Assessment Program to evaluate the health impacts of exposures to volatile organic vapors detected within residences located immediately to the west of the Alcoa property. This health consultation addresses inhalation exposure to individuals that may have occupied the currently vacant residences in which the air sampling was completed.
Resumo:
Iowa's secondary roads contain nearly 15,000 bridges which are less than 40 feet (12 m) in length. Many of these bridges were built several decades ago and need to be replaced. Box culvert construction has proven to be an adequate bridge replacement technique. Recently a new bridge replacement alternative, called the Air-0-Form method, has emerged which has several potential advantages over box culvert construction. This new technique uses inflated balloons as the interior form in the construction of an arch culvert. The objective of research project HR-314 was to construct an air formed arch culvert to determine the applicability of the Air-O-Form technique as a county bridge replacement alternative.
Resumo:
A noise wall was investigated to assess its effect on snow accumulation and air quality. Wind tunnel studies were undertaken to evaluate (a) possible snow accumulations and (b) the dispersion of particulate concentrations (dust, smoke, and lead particles) and carbon monoxide. Full-scale monitoring of particulate concentrations and carbon monoxide was performed both before and after the noise wall was constructed. The wind tunnel experiments for snow accumulation were conducted on a model wall located in a flat, unobstructed area. A separated flow zone existed upwind of the wall and snow immediately began to accumulate over most of the separated zone. Having the noise wall in an aerodynamically rough area, such as in an urban area as this one was, substantially decreased the amount of snow collected, compared with in the wind tunnel studies, because of turbulence reducing the separation zone. The snow accumulation has not been significantly greater with the noise wall in place than it was before construction and has proven to be of no concern to date. Monitoring for particulate concentrations has shown that the noise wall has had a beneficial effect because the amount of material collected was reduced. With the noise wall in place, monitoring for carbon monoxide has indicated that (a) for equivalent emissions under conditions of high atmospheric stability and low wind speeds, the carbon monoxide levels would be lower; and (b) under conditions of low atmospheric stability and high wind speeds, the carbon monoxide levels would be higher than expected without the wall in place.
Resumo:
The Iowa Department of Public Health (IDPH), Hazardous Waste Site Health Assessment Program was asked by the US Environmental Protection Agency (EPA) to review a round of air sampling data. The air data was collected and analyzed during a removal action at the Le Mars Coal Gas Site in Le Mars, Iowa. EPA asked IDPH to determine from the air data if additional monitoring is necessary throughout the removal action to protect nearby residents from exposure.
Resumo:
On June 23, 2004, the U.S. Environmental Protection Agency (EPA) announced its intention to remove the Mid-American Tanning Company site from the National Priorities List (NPL). The EPA is inviting public comment on the proposed de-listing of the site from the NPL. The Iowa Department of Public Health in cooperation with the Agency for Toxic Substances and Disease Registry (ATSDR) prepared this health consultation to review the current status of the Mid-America Tanning Company site and to provide an evaluation of any public health consequences of de-listing the site. The information in this health consultation was current at the time of writing. Data that emerges later could alter this document’s conclusions and recommendations.