38 resultados para Light Speed
Resumo:
This report describes results from a study evaluating the use of stringless paving using a combination of global positioning and laser technologies. CMI and Geologic Computer Systems developed this technology and successfully implemented it on construction earthmoving and grading projects. Concrete paving is a new area for considering this technology. Fred Carlson Co. agreed to test the stringless paving technology on two challenging concrete paving projects located in Washington County, Iowa. The evaluation was conducted on two paving projects in Washington County, Iowa, during the summer of 2003. The research team from Iowa State University monitored the guidance and elevation conformance to the original design. They employed a combination of physical depth checks, surface location and elevation surveys, concrete yield checks, and physical survey of the control stakes and string line elevations. A final check on profile of the pavement surface was accomplished by the use of the Iowa Department of Transportation Light Weight Surface Analyzer (LISA). Due to the speed of paving and the rapid changes in terrain, the laser technology was abandoned for this project. Total control of the guidance and elevation controls on the slip-form paver were moved from string line to global positioning systems (GPS). The evaluation was a success, and the results indicate that GPS control is feasible and approaching the desired goals of guidance and profile control with the use of three dimensional design models. Further enhancements are needed in the physical features of the slipform paver oil system controls and in the computer program for controlling elevation.
Resumo:
On July 1, 2005, the State of Iowa implemented a 70 mile per hour (mph) speed limit on most rural Interstates. This document reports on a study of the safety effect of this change. Changes in speeds, traffic volume on and off the rural Interstate system (diversion), and safety (crashes) for on- and off-system roads were studied. After the change, mean and 85th percentile speeds increased by about 2 mph on rural Interstates, but speeding was reduced (the number of drivers exceeding the speed limit by 10 mph decreased from 20 per cent to about 8 per cent). Daytime and nighttime serious crashes were studied for a period of 14 and a half years prior to the change and 2 and a half years afterwards. Simple descriptive statistics reveal increases in all crash severity categories for the 2 and a half year period following the speed limit increase when compared to the most recent comparable 2 and a half year period prior to the increase. When compared to longer term trends, the increases were less pronounced in some severity levels and types, and for a few severity levels the average crash frequencies were observed to decrease. However, fatal and other serious cross-median crashes increased by relatively larger amounts as compared to expected random variation. The study also analyzed crash frequencies grouped into six-month periods, revealing similar findings.
Resumo:
The Federal Highway Administration estimates that red light running causes more than 100,000 crashes and 1,000 fatalities annually and results in an estimated economic loss of over $14 billion per year in the United States. In Iowa alone, a statewide analysis of red light running crashes, using crash data from 2001 to 2006, indicates that an average of 1,682 red light running crashes occur at signalized intersections every year. As a result, red light running poses a significant safety issue for communities. Communities rarely have the resources to place additional law enforcement in the field to combat the problem and they are increasingly using automated red light running camera-enforcement systems at signalized intersections. In Iowa, three communities currently use camera enforcement since 2004. These communities include Davenport, Council Bluffs, and Clive. As communities across the United States attempt to address red light running, a number of communities have implemented red light running camera enforcement programs. This report examines the red light running programs in Iowa and summarizes results of analyses to evaluate the effectiveness of such cameras.
Resumo:
Several recent studies have demonstrated differences in safety between different types of left-turn phasing—protected, permitted, and protected/permitted phasing. The issue in question is whether older and younger drivers are more affected by a particular type of left-turn phasing at high-speed signalized intersections and whether they are more likely to contribute to a left-turn related crash under a specific type of left-turn phasing. This study evaluated the impact of different types of left-turn phasing on older and younger drivers at high-speed signalized intersections in Iowa. High-speed signalized intersections were of interest since oncoming speeds and appropriate gaps may be more difficult to judge for older drivers and those with less experience. A total of 101 intersections from various urban locations in Iowa with at least one intersecting roadway with a posted speed limit of 45 mph or higher were evaluated. Left-turn related crashes from 2001 to 2003 were evaluated. Left-turn crash rate and severity for young drivers (14- to 24-year-old), middle-age drivers (25- to 64-year-old), and older drivers (65 years and older) were calculated. Poisson regression was used to analyze left-turn crash rates by age group and type of phasing. Overall, left-turn crash rates indicated that protected phasing is much safer than protected/permitted and permitted phasing. Protected/permitted phasing had the highest left-turn crash rates overall.
Resumo:
The main objective of this research was to evaluate the impact of temporary speed humps and speed tables on vehicle speeds, vehicle speed profiles, and traffic volumes along local and/or collector streets in several rural Iowa cities. A 25 mile per hour (mph) temporary speed hump and a 30 mph temporary speed table, both made of recycled rubber, were purchased to test the impact of temporary devices. Two cities volunteered and the speed hump/table was installed on two test streets in the city of Atlantic (Roosevelt Drive and Redwood Drive) and one test street in the city of Le Claire (Canal Shore Drive). The speed hump was installed first and then converted to a speed table. Each device was installed for a period of at least two weeks at the same location. Speed, volume, and resident opinion data were then collected and evaluated.
Resumo:
The Iowa Department of Transportation (DOT) has made improving work zone (WZ) safety a high priority. Managing vehicle speeds through work zones is perceived to be an important factor in achieving this goal. A number of speed reduction techniques are currently used by transportation agencies throughout the country to control speeds and reduce speed variation at work zones. The purpose of this project is to study these and other applicable work zone speed reduction strategies. Furthermore, this research explores transportation agencies' policies regarding managing speeds in long-term, short-term, and moving work zones. This report consists of three chapters. The first chapter, a literature review, examines the current speed reduction practices at work zones and provides a review of the relevant literature. The speed control strategies reviewed in this chapter range from posting regulatory and advisory speed limit signs to using the latest radar technologies to reduce speeds at work zones. The second chapter includes a short write-up for each identified speed control technique. The write-up includes a description, the results of any field tests, the benefits and the costs of the technology or technique. To learn more about other state policies regarding work zone speed reduction and management, the Center for Transportation Research and Education conducted a survey. The survey consists of six multipart questions. The third chapter provides summaries of the response to each question.
Resumo:
This research study, a cooperative effort between the Iowa Department of Transportation and the Center for Transportation Research and Education at Iowa State University, reviewed red light running reduction studies and programs nationwide, examined the scope of this phenomenon in Iowa, and proposed countermeasures to address significant violation problems.
Resumo:
Part 6 of the Manual on Uniform Traffic Control Devices (MUTCD) describes several types of channelizing devices that can be used to warn road users and guide them through work zones; these devices include cones, tubular markers, vertical panels, drums, barricades, and temporary raised islands. On higher speed/volume roadways, drums and/or vertical panels have been popular choices in many states, due to their formidable appearance and the enhanced visibility they provide when compared to standard cones. However, due to their larger size, drums also require more effort and storage space to transport, deploy and retrieve. Recent editions of the MUTCD have introduced new devices for channelizing; specifically of interest for this study is a taller (>36 inches) but thinner cone. While this new device does not offer a comparable target value to that of drums, the new devices are significantly larger than standard cones and they offer improved stability as well. In addition, these devices are more easily deployed and stored than drums and they cost less. Further, for applications previously using both drums and tall cones, the use of tall cones only provides the ability for delivery and setup by a single vehicle. An investigation of the effectiveness of the new channelizing devices provides a reference for states to use in selecting appropriate traffic control for high speed, high volume applications, especially for short term or limited duration exposures. This study includes a synthesis of common practices by state DOTs, as well as daytime and nighttime field observations of driver reactions using video detection equipment. The results of this study are promising for the day and night performance of the new tall cones, comparing favorably to the performance of drums when used for channelizing in tapers. The evaluation showed no statistical difference in merge distance and location, shy distance, or operating speed in either daytime or nighttime conditions. The study should provide a valuable resource for state DOTs to utilize in selecting the most effective channelizing device for use on high speed/high volume roadways where timely merging by drivers is critical to safety and mobility.