74 resultados para Industrial maintenance
Resumo:
Weathering steel is commonly used as a cost-effective alternative for bridge superstructures, as the costs and environmental impacts associated with the maintenance/replacement of paint coatings are theoretically eliminated. The performance of weathering steel depends on the proper formation of a surface patina, which consists of a dense layer of corrosion product used to protect the steel from further atmospheric corrosion. The development of the weathering steel patina may be hindered by environmental factors such as humid environments, wetting/drying cycles, sheltering, exposure to de-icing chlorides, and design details that permit water to pond on steel surfaces. Weathering steel bridges constructed over or adjacent to other roadways could be subjected to sufficient salt spray that would impede the development of an adequate patina. Addressing areas of corrosion on a weathering steel bridge superstructure where a protective patina has not formed is often costly and negates the anticipated cost savings for this type of steel superstructure. Early detection of weathering steel corrosion is important to extending the service life of the bridge structure; however, written inspection procedures are not available for inspectors to evaluate the performance or quality of the patina. This project focused on the evaluation of weathering steel bridge structures, including possible methods to assess the quality of the weathering steel patina and to properly maintain the quality of the patina. The objectives of this project are summarized as follows: Identify weathering steel bridge structures that would be most vulnerable to chloride contamination, based on location, exposure, environment, and other factors. Identify locations on an individual weathering steel bridge structure that would be most susceptible to chloride contamination, such as below joints, splash/spray zones, and areas of ponding water or debris. Identify possible testing methods and/or inspection techniques for inspectors to evaluate the quality of the weathering steel patina at locations discussed above. Identify possible methods to measure and evaluate the level of chloride contamination at the locations discussed above. Evaluate the effectiveness of water washing on removing chlorides from the weathering steel patina. Develop a general prioritization for the washing of bridge structures based on the structure’s location, environment, inspection observations, patina evaluation findings, and chloride test results.
Resumo:
It is intuitively obvious that snow or ice on a road surface will make that surface more slippery and thus more hazardous. However, quantifying this slipperiness by measuring the friction between the road surface and a vehicle is rather difficult. If such friction readings could be easily made, they might provide a means to control winter maintenance activities more efficiently than at present. This study is a preliminary examination of the possibility of using friction as an operational tool in winter maintenance. In particular, the relationship of friction to traffic volume and speed, and accident rates is examined, and the current lack of knowledge in this area is outlined. The state of the art of friction measuring techniques is reviewed. A series of experiments whereby greater knowledge of how friction deteriorates during a storm and is restored by treatment is proposed. The relationship between plowing forces and the ice-pavement bond strength is discussed. The challenge of integrating all these potential sources of information into a useful final product is presented together with a potential approach. A preliminary cost-benefit analysis of friction measuring devices is performed and suggests that considerable savings might be realized if certain assumptions should hold true. The steps required to bring friction from its current state as a research tool to full deployment as an operational tool are presented and discussed. While much remains to be done in this regard, it is apparent that friction could be an extremely effective operational tool in winter maintenance activities of the future.
Resumo:
The Bridge Maintenance Manual is published solely to provide information and guidance to bridge maintenance personnel when repairing bridges in the state of Iowa. This manual is issued to secure, so far as possible, uniformity of practice and procedure in methods developed by experience. Budgetary limitations, volumes and types of traffic, local conditions and other factors may render complete compliance with the guidelines set forth, in this manual, impossible or impractical. This manual is not purported to be a complete guide in all areas of bridge maintenance and is not a substitute for engineering judgment.
Resumo:
Iowa's public road system of 112,000 miles is one of the largest and the best in the nation. It represents a considerable financial investment of taxpayer revenues over the years. And, it requires a sustained investment to preserve an economical level of transport service into the future. In 1982, a Governor's Blue Ribbon Transportation Task Force evaluated the effectiveness of Iowa's entire transportation system. Four important Task Force recommendations dealt with public road administrative issues in Iowa. These issues were related to: (1) Design criteria and levels of maintenance; (2) Consistency in the use of standards among jurisdictions; (3) Consolidation of maintenance operations at one jurisdiction level; and (4) Jurisdicational authority for roads; The issues formed the background for Research Project HR-265.
Resumo:
In an earlier research project, HR-204, the magnitude and nature of highway related tort claims against counties in Iowa were investigated. However, virtually all of the claims identified in that research resulted from incidents that occurred in areas with predominantly agricultural land use. With recent increases in the rural non-farm population, many traditionally urban problems are also appearing in built-up areas under county jurisdiction. This trend is expected to continue so that counties must anticipate a change in the nature of the tort claims they will encounter. Problems that heretofore have been unique to cities may become commonplace in areas for which counties are responsible. The research reported here has been directed toward an investigation of those problems in rural subdivisions that lead to claims growing out of the provision of highway services by counties. Lacking a sufficient database among counties for the types of tort claims of interest in this research, a survey was sent to 259 cities in Iowa in order to identify highway related problems leading to those claims. The survey covered claims during a five year period from 1975 to 1980. Over one-third of the claims reported were based on alleged street defects. Another 34 percent of the claims contained allegations of damages due to backup of sanitary sewers or defects in sidewalks. By expanding the sample from the 164 cities that responded to the survey, it was estimated that a total of $49,000,000 in claims had been submitted to all 259 cities. Over 34% of this amount resulted from alleged defects in the use of traffic signs, signals, and markings. Another 42% arose from claims of defects in streets and sidewalks. Payments in settlement of claims were about 13.4% of the amount asked for those claims closed during the period covered by the survey. About $9,000,000 in claims was pending on June 30, 1980 according to the information furnished. Officials from 23 cities were interviewed to provide information on measures to overcome the problems leading to tort claims. On the basis of this information, actions have been proposed that can be undertaken by counties to reduce the potential for highway-related claims resulting from their responsibilities in rural subdivisions and unincorporated communities. Suggested actions include the eight recommendations contained in the final report for the previous research under HR-204. In addition, six recommendations resulted from this research, as follows: 1. Counties should adopt county subdivision ordinances. 2. A reasonable policy concerning sidewalks should be adopted. 3. Counties should establish and implement a system for setting road maintenance priorities. 4. Counties should establish and implement a procedure for controlling construction or maintenance activities within the highway right of way. 5. Counties should establish and implement a system to record complaints that are received relating to highway maintenance and to assure timely correction of defective conditions leading to such complaints. 6. Counties should establish and implement a procedure to ensure timely advice of highway defects for which notice is not otherwise received.
Resumo:
The use of abrasives in winter maintenance is a well-established practice. The sand or other abrasive is intended to increase friction between vehicles and the (often snow or ice covered) pavement. In many agencies (and in many Iowa Counties, the focus of this study) the use of sand is a standard part of winter maintenance. Yet very little information exists on the value of sanding as a winter maintenance procedure. Some studies suggest that friction gains from sanding are minimal. In addition, there are increasing environmental concerns about sanding. These concerns focus on air quality and stormwater quality issues. This report reviews the state of the practice of abrasive usage in Iowa Counties, and classifies that usage according to its effectiveness. Possible changes in practice (with respect to abrasive usage) are presented and discussed.
Resumo:
The first phase of a two-phase research project was conducted to develop guidelines for Iowa transportation officials on the use of thin maintenance surfaces (TMS) for asphaltic concrete and bituminous roads. Thin maintenance surfaces are seal coats (chip seals), slurry seals, and micro-surfacing. Interim guidelines were developed to provide guidance on which roads are good candidates for TMS, when TMS should be placed, and what type of thin maintenance surface should be selected. The guidelines were developed specifically for Iowa aggregates, weather, traffic conditions, road user expectations, and transportation official expectations. In addition to interim guidelines, this report presents recommendations for phase-two research. It is recommended that test section monitoring continue and that further investigations be conducted regarding thin maintenance surface aggregate, additional test sections, placed, and a design method adopted for seal coats.
Resumo:
In recent years there has been renewed interest in using preventive maintenance techniques to extend pavement life and to ensure low life cycle costs for our road infrastructure network. Thin maintenance surfaces can be an important part of a preventive maintenance program for asphalt cement concrete roads. The Iowa Highway Research Board has sponsored Phase Two of this research project to demonstrate the use of thin maintenance surfaces in Iowa and to develop guidelines for thin maintenance surface uses that are specific to Iowa. This report documents the results of test section construction and monitoring started in Phase One and continued in Phase Two. The report provides a recommended seal coat design process based on the McLeod method and guidance on seal coat aggregates and binders. An update on the use of local aggregates for micro-surfacing in Iowa is included. Winter maintenance guidelines for thin maintenance surfaces are reported herein. Finally, Phase One's interim, qualitative thin maintenance surface guidelines are supplemented with Phase two's revised, quantitative guidelines. When thin maintenance surfaces are properly selected and applied, they can improve the pavement surface condition index and the skid resistance of pavements. For success to occur, several requirements must be met, including proper material selection, design, application rate, workmanship, and material compatibility, as well as favorable weather during application and curing. Specific guidance and recommendations for many types of thin maintenance surfaces and conditions are included in the report.
Resumo:
"Metric Training For The Highway Industry", HR-376 was designed to produce training materials for the various divisions of the Iowa DOT, local government and the highway construction industry. The project materials were to be used to introduce the highway industry in Iowa to metric measurements in their daily activities. Five modules were developed and used in training over 1,000 DOT, county, city, consultant and contractor staff in the use of metric measurements. The training modules developed deal with the planning through operation areas of highway transportation. The materials and selection of modules were developed with the aid of an advisory personnel from the highway industry. Each module is design as a four hour block of instruction and a stand along module for specific types of personnel. Each module is subdivided into four chapters with chapter one and four covering general topics common to all subjects. Chapters two and three are aimed at hands on experience for a specific group and subject. This module includes: Module 2 - Construction and Maintenance Operations and Reporting. This module provides hands on examples of applications of metric measurements in the construction and maintenance field operations.
Resumo:
In 1980, a Vanguard High Pressure Water Blaster capable of providing 10 gallons of water per minute at 2000 psi was purchased to evaluate water blasting as a crack cleaning method prior to crack filling on asphalt concrete pavements. Afer some iniital trials demonstrated its effectiveness of removing dirt, debris and vegetation, it was included in joint and crack maintenance research on Iowa 7 in Webster County. The objective of the research was to evaluate six crack preparation methods and seven "sealant" materials. The cleaning and sealing was performed in the spring of 1983. Visual evaluations of the performance were made in the fall of 1983 and spring of 1985. Compressed air and/or high pressure water did not adequately prepare cracks less than 3/8 inch wide. Routing or sawing was necessary to provide a sealant reservoir. The water blaster was more effective than compressed air in removing dirt, debris and vegetation but this did not yield significant improvement in sealant adhesion or longevity. Periodic crack filling is necessary on ACC surfaces throughout the remaining life of the pavement.
Resumo:
Iowa's public road system of 112,000 miles is one of the largest and the best in the nation. It represents a considerable financial investment of taxpayer revenues over the years. And, it requires a sustained investment to preserve an economical level of transport service into the future. In 1982, a Governor's Blue Ribbon Transportation Task Force evaluated the effectiveness of Iowa's entire transportation system. Four important Task Force recommendations dealt with public road administrative issues in Iowa. These issues were related to: 1. design criteria and levels of maintenance 2. consistency in the use of standards among jurisdictions 3. consolidation of maintenance operations at one jurisdictional level and 4. jurisdictional authority for roads. The issues formed the background for Research Project HR-265.
Resumo:
Most states, including Iowa, have a significant number of substandard bridges. This number will increase significantly unless some type of preventative maintenance is employed. Both the Iowa Department of Transportation and Iowa counties have successfully employed numerous maintenance, repair and rehabilitation (MR&R) strategies for correcting various types of deficiencies. However, successfully employed MR&R procedures are often not systematically documented or defined for those involved in bridge maintenance. This study addressed the need for a standard bridge MR&R manual for Iowa with emphasis for secondary road applications. As part of the study, bridge MR&R activities that are relevant to the state of Iowa have been systematically categorized into a manual, in a standardized format. Where pertinent, design guidelines have been presented. Material presented in this manual is divided into two major categories: 1) Repair and Rehabilitation of Bridge Superstructure Components, and 2) Repair and Rehabilitation of Bridge Substructure Components. There are multiple subcategories within both major categories that provide detailed information. Some of the detailed information includes step-by-step procedures for accomplishing MR&R activities, material specifications and detailed drawings where available. The source of information contained in the manual is public domain technical literature and information provided by Iowa County Engineers. A questionnaire was sent to all 99 counties in Iowa to solicit information and the research team personally solicited input from many Iowa counties as a follow-up to the questionnaire.
Resumo:
The large volume of traffic on the interstate system makes it difficult to make pavement repairs. The maintenance crew needs 4-5 hours to break out the concrete to be replaced and prepare the hole for placing new concrete. Because of this it is usually noon before the patch can be placed. Since it is desirable to remove the barricades before dark there are only 7-8 hours for the concrete to reach the required strength. There exists a need for a concrete that can reach the necessary strength (modulus of rupture = 500 psi) in 7-8 hours. The purpose of this study is to determine if type III cement and/or an accelerator can be used in an M-4 mix to yield a fast setting patch with very little shrinkage. It is recognized that calcium chloride is a corrosive material and may therefore have detrimental effects upon the reinforcing steel. The study of these effects, however, is beyond the scope of this investigation.
Resumo:
Audit report on America’s Agricultural Industrial Heritage Landscape, Inc., d/b/a Silos and Smokestacks National Heritage Area and Silos and Smokestacks Natural Heritage Area Foundation in Waterloo, Iowa for the years ended December 31, 2013 and 2012
Resumo:
This project involved the evaluation of several aggregates previously rated poor to excellent with respect to skid resistance and certain mix design parameters. An open graded asphalt friction course was evaluated using 4 comparably graded aggregates: quartzite, fine grained limestone, coarse limestone and lightweight expanded shale. The performance investigations involved the verification of observations of the quartzite test sections, evaluation of the effect of blending the superior quartzite with a typical coarse grained-textured limestone, and the evaluation of the limestone. The effects of traffic on the aggregates used in the test sections were studied, as well as the relationship between asphalt content levels and traffic with respect to performance. The bond of the open graded friction course mixture was also evaluated. The SN performance of all test sections after sixteen months of exposure was found to be satisfactory in that none of the material combinations had polished to the point where unacceptable SN levels developed. When material combinations were compared, significant differences were noted.