138 resultados para High-Strength concrete


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the past, culvert pipes were made only of corrugated metal or reinforced concrete. In recent years, several manufacturers have made pipe of lightweight plastic - for example, high density polyethylene (HDPE) - which is considered to be viscoelastic in its structural behavior. It appears that there are several highway applications in which HDPE pipe would be an economically favorable alternative. However, the newness of plastic pipe requires the evaluation of its performance, integrity, and durability; A review of the Iowa Department of Transportation Standard Specifications for Highway and Bridge Construction reveals limited information on the use of plastic pipe for state projects. The objective of this study was to review and evaluate the use of HDPE pipe in roadway applications. Structural performance, soil-structure interaction, and the sensitivity of the pipe to installation was investigated. Comprehensive computerized literature searches were undertaken to define the state-of-the-art in the design and use of HDPE pipe in highway applications. A questionnaire was developed and sent to all Iowa county engineers to learn of their use of HDPE pipe. Responses indicated that the majority of county engineers were aware of the product but were not confident in its ability to perform as well as conventional materials. Counties currently using HDPE pipe in general only use it in driveway crossings. Originally, we intended to survey states as to their usage of HDPE pipe. However, a few weeks after initiation of the project, it was learned that the Tennessee DOT was in the process of making a similar survey of state DOT's. Results of the Tennessee survey of states have been obtained and included in this report. In an effort to develop more confidence in the pipe's performance parameters, this research included laboratory tests to determine the ring and flexural stiffness of HDPE pipe provided by various manufacturers. Parallel plate tests verified all specimens were in compliance with ASTM specifications. Flexural testing revealed that pipe profile had a significant effect on the longitudinal stiffness and that strength could not be accurately predicted on the basis of diameter alone. Realizing that the soil around a buried HDPE pipe contributes to the pipe stiffness, the research team completed a limited series of tests on buried 3 ft-diameter HDPE pipe. The tests simulated the effects of truck wheel loads above the pipe and were conducted with two feet of cover. These tests indicated that the type and quality of backfill significantly influences the performance of HDPE pipe. The tests revealed that the soil envelope does significantly affect the performance of HDPE pipe in situ, and after a certain point, no additional strength is realized by increasing the quality of the backfill.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fast track concrete has proven to be successful in obtaining high early strengths. This benefit does not come without cost. Type III cement and insulation blankets to accelerate the cure add to its expense when compared to conventional paving. This research was intended to determine the increase in time required to obtain opening strength when a fast track mix utilized conventional Type I cement and also used a conventional cure. Standard concrete mixes also were tested to determine the acceleration of strength gain when cured with insulation blankets. The goal was to determine mixes and procedures which would result in a range of opening times. This would allow the most economical design for a particular project and tailor it to that projects time restraint. Three mixes were tested: Class F, Class C, and Class B. Each mix was tested with one section being cured with insulation blankets and another section without. All used Type I cement. Iowa Department of Transportation specifications required 500 psi of flexural strength before a pavement can be opened to traffic. The Class F mix with Type I cement and using insulation blankets reached that strength in approximately 36 hours, the Class C mix using the blankets in approximately 48 hours, and the Class F mix without covers in about 60 hours. (Note: Class F concrete pavement is opened at 400 psi minimum and Class F bonded overlay pavement at 350 psi.) The results showed a significant improvement in early strength gain by the use of insulation blankets. The Type I cement could be used in mixes intended for early opening with sacrifices in time when compared to fast track but are still much sooner than conventional pavement. It appears a range of design alternatives is possible using Type I cement both with and without insulating blankets.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of curing temperature, in the range of 4.4 to 22.8 degrees C (40 to 73 degrees F), on strength development was studied based on the maturity and pulse velocity measurements in this report. The strength-maturity relationships for various mixes using a Type I cement and using a Type IP cement, respectively, were experimentally developed. The similar curves for early age strength development of both the patching concrete, using a Type I cement with the addition of calcium chloride, and the fast track concrete, using a Type III cement and fly ash, have also been proposed. For the temperature ranges studied, the strength development of concrete can be determined using a pulse velocity measurement, but only for early ages up to 24 hours. These obtained relationships can be used to determine when a pavement can be opened to traffic. The amount of fly ash substitution, up to 30%, did not have a significant influence on the strength-maturity relationship.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recent data compiled by the National Bridge Inventory revealed 29% of Iowa's approximate 24,600 bridges were either structurally deficient or functionally obsolete. This large number of deficient bridges and the high cost of needed repairs create unique problems for Iowa and many other states. The research objective of this project was to determine the load capacity of a particular type of deteriorating bridge – the precast concrete deck bridge – which is commonly found on Iowa's secondary roads. The number of these precast concrete structures requiring load postings and/or replacement can be significantly reduced if the deteriorated structures are found to have adequate load capacity or can be reliably evaluated. Approximately 600 precast concrete deck bridges (PCDBs) exist in Iowa. A typical PCDB span is 19 to 36 ft long and consists of eight to ten simply supported precast panels. Bolts and either a pipe shear key or a grouted shear key are used to join adjacent panels. The panels resemble a steel channel in cross-section; the web is orientated horizontally and forms the roadway deck and the legs act as shallow beams. The primary longitudinal reinforcing steel bundled in each of the legs frequently corrodes and causes longitudinal cracks in the concrete and spalling. The research team performed service load tests on four deteriorated PCDBs; two with shear keys in place and two without. Conventional strain gages were used to measure strains in both the steel and concrete, and transducers were used to measure vertical deflections. Based on the field results, it was determined that these bridges have sufficient lateral load distribution and adequate strength when shear keys are properly installed between adjacent panels. The measured lateral load distribution factors are larger than AASHTO values when shear keys were not installed. Since some of the reinforcement had hooks, deterioration of the reinforcement has a minimal affect on the service level performance of the bridges when there is minimal loss of cross-sectional area. Laboratory tests were performed on the PCDB panels obtained from three bridge replacement projects. Twelve deteriorated panels were loaded to failure in a four point bending arrangement. Although the panels had significant deflections prior to failure, the experimental capacity of eleven panels exceeded the theoretical capacity. Experimental capacity of the twelfth panel, an extremely distressed panel, was only slightly below the theoretical capacity. Service tests and an ultimate strength test were performed on a laboratory bridge model consisting of four joined panels to determine the effect of various shear connection configurations. These data were used to validate a PCDB finite element model that can provide more accurate live load distribution factors for use in rating calculations. Finally, a strengthening system was developed and tested for use in situations where one or more panels of an existing PCDB need strengthening.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Portland cement pervious concrete (PCPC) is being used more frequently due to its benefits in reducing the quantity of runoff water,improving water quality, enhancing pavement skid resistance during storm events by rapid drainage of water, and reducing pavement noise. In the United States, PCPC typically has high porosity and low strength, which has resulted in the limited use of pervious concrete, especially in hard wet freeze environments (e.g., the Midwestern and Northeastern United States and other parts of the world).Improving the strength and freeze-thaw durability of pervious concrete will allow an increase in its use in these regions. The objective of this research is to develop a PCPC mix that not only has sufficient porosity for stormwater infiltration, but also desirable strength and freeze-thaw durability. In this research, concrete mixes were designed with various sizes and types of aggregates, binder contents, and admixture amounts. The engineering properties of the aggregates were evaluated. Additionally, the porosity, permeability, strength, and freeze-thaw durability of each of these mixes was measured. Results indicate that PCPC made with single-sized aggregate has high permeability but not adequate strength. Adding a small percent of sand to the mix improves its strength and freeze-thaw resistance, but lowers its permeability. Although adding sand and latex improved the strength of the mix when compared with single-sized mixes, the strength of mixes where only sand was added were higher. The freeze-thaw resistance of PCPC mixes with a small percentage of sand also showed 2% mass loss after 300 cycles of freeze-thaw. The preliminary results of the effects of compaction energy on PCPC properties show that compaction energy significantly affects the freeze-thaw durability of PCPC and, to a lesser extent, reduces compressive strength and split strength and increases permeability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Federal and state policy makers increasingly emphasize the need to reduce highway crash rates. This emphasis is demonstrated in Iowa’s recently released draft Iowa Strategic Highway Safety Plan and by the U.S. Department of Transportation’s placement of “improved transportation safety” at the top of its list of strategic goals. Thus, finding improved methods to enhance highway safety has become a top priority at highway agencies. The objective of this project is to develop tools and procedures by which Iowa engineers can identify potentially hazardous roadway locations and designs, and to demonstrate the utility of these tools by developing candidate lists of high crash locations in the State. An initial task, building an integrated database to facilitate the tools and procedures, is an important product, in and of itself. Accordingly, the Iowa Department of Transportation (Iowa DOT) Geographic Information Management System (GIMS) and Geographic Information System Accident Analysis and Location System (GIS-ALAS) databases were integrated with available digital imagery. (The GIMS database contains roadway characteristics, e.g., lane width, surface and shoulder type, and traffic volume, for all public roadways. GIS-ALAS records include data, e.g., vehicles, drivers, roadway conditions, and the crash severity, for crashes occurring on public roadways during then past 10 years.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The addition of supplementary cementitious materials (SCMs), such as fly ash (FA) and slag, generally improves concrete workability, durability, and long-term strength. New trends in sustainable development of concrete infrastructure and in environmental regulations on waste disposal are spurring use of SCMs in concrete. However, use of SCM concrete is sometimes limited due to a lack of understanding about material behaviors and lack of proper specifications for its construction practice. It is believed that SCM concrete performance varies significantly with the source and proportion of the cementitious materials. SCM concrete often displays slower hydration, accompanied by slower setting and lower early-age strength, especially under cold weather conditions. The present research was conducted to have a better understanding of SCM concrete behaviors under different weather conditions. In addition to the study of the effect of SCM content on concrete set time using cementitious materials from different sources/manufacturers, further research may be needed to investigate the effects of SCM combinations on concrete flowability, air stability, cracking resistance, and durability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concrete curing is closely related to cement hydration, microstructure development, and concrete performance. Application of a liquid membrane-forming curing compound is among the most widely used curing methods for concrete pavements and bridge decks. Curing compounds are economical, easy to apply, and maintenance free. However, limited research has been done to investigate the effectiveness of different curing compounds and their application technologies. No reliable standard testing method is available to evaluate the effectiveness of curing, especially of the field concrete curing. The present research investigates the effects of curing compound materials and application technologies on concrete properties, especially on the properties of surface concrete. This report presents a literature review of curing technology, with an emphasis on curing compounds, and the experimental results from the first part of this research—lab investigation. In the lab investigation, three curing compounds were selected and applied to mortar specimens at three different times after casting. Two application methods, single- and double-layer applications, were employed. Moisture content, conductivity, sorptivity, and degree of hydration were measured at different depths of the specimens. Flexural and compressive strength of the specimens were also tested. Statistical analysis was conducted to examine the relationships between these material properties. The research results indicate that application of a curing compound significantly increased moisture content and degree of cement hydration and reduced sorptivity of the near-surface-area concrete. For given concrete materials and mix proportions, optimal application time of curing compounds depended primarily upon the weather condition. If a sufficient amount of a high-efficiency-index curing compound was uniformly applied, no double-layer application was necessary. Among all test methods applied, the sorptivity test is the most sensitive one to provide good indication for the subtle changes in microstructure of the near-surface-area concrete caused by different curing materials and application methods. Sorptivity measurement has a close relation with moisture content and degree of hydration. The research results have established a baseline for and provided insight into the further development of testing procedures for evaluation of curing compounds in field. Recommendations are provided for further field study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Much of the current research in portland cement concrete (PCC) pavements deals with the analysis of early pavement life failures and seeks to find ways to prevent those from reoccurring. The Long Term Pavement Performance (LTPP) portion of the Strategic Highway Research Program (SHRP) has identified some of the key factors in designing and building new PCC pavements. This statement will build on the Iowa Highway Research Board (IHRB) project TR-463, Field Performance Study of Past Iowa Pavement Research: A Look Back. In Iowa and across the nation, there are multiple pavements that were built more than 20 years ago that have been and are continuing to provide very good service to the public. They are found on both state and local routes and in both low and high traffic volume areas. There is a need to learn what went into those pavements, from the subgrade through the surface, that makes them perform so well. The purpose of this research project was to conduct a scoping study that could be used to evaluate the need for additional research to study the attributes of well-performing concrete pavements. The concept of zero-maintenance jointed plain concrete pavements” was iterated in this study for long-lasting, well-performing portland cement concrete pavement sections. The scope of the study was limited to a brief literature survey, pavement performance data collection from many counties, cities, and primary and interstate roads in Iowa, field visits to many selected pavement sites, and analysis of the collected data. No laboratory orfield testing was conducted for this phase of the project. A problem statement with a research plan was created that could be used to guide the second phase of the project.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Standards for the construction of full-depth patching in portland cement concrete pavement usually require replacement of all deteriorated based materials with crushed stone, up to the bottom of the existing pavement layer. In an effort to reduce the time of patch construction and costs, the Iowa Department of Transportation and the Department of Civil, Construction and Environmental Engineering at Iowa State University studied the use of extra concrete depth as an option for base construction. This report compares the impact of additional concrete patching material depth on rate of strength gain, potential for early opening to traffic, patching costs, and long-term patch performance. This report also compares those characteristics in terms of early setting and standard concrete mixes. The results have the potential to change the method of Portland cement concrete pavement patch construction in Iowa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For a variety of reasons, the concrete construction industry is not sustainable. First, it consumes huge quantities of virgin materials. Second, the principal binder in concrete is portland cement, the production of which is a major contributor to greenhouse gas emissions that are implicated in global warming and climate change. Third, many concrete structures suffer from lack of durability which has an adverse effect on the resource productivity of the industry. Because the high-volume fly ash concrete system addresses all three sustainability issues, its adoption will enable the concrete construction industry to become more sustainable. In this paper, a brief review is presented of the theory and construction practice with concrete mixtures containing more than 50% fly ash by mass of the cementitious material. Mechanisms are discussed by which the incorporation of high volume of fly ash in concrete reduces the water demand, improves the workability, minimizes cracking due to thermal and drying shrinkage, and enhances durability to reinforcement corrosion, sulfate attack, and alkali-silica expansion. For countries like China and India, this technology can play an important role in meeting the huge demand for infrastructure in a sustainable manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent research evaluated the behavior of concrete made with supplementary cementitious materials (SCMs) such as fly ash and ground granulated blast-furnace slag under a variety of conditions. Correlations were found among the source and proportion of the SCMs, curing conditions, concrete set time, maturity, strength development, and cracking potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To ensure that high-quality materials are used in concrete mixing, all materials delivered to the site should be inspected to ensure that they meet specification requirements. All materials should be delivered with the proper certifications, invoices, or bill of lading. These records should indicate when the shipment arrived, the amount and identification of material delivered, and the laboratory report certification number, invoice number, and ticket number.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Iowa Method for bridge deck overlays has been very successful in Iowa since its adoption in the 1970s. This method involves removal of deteriorated portions of a bridge deck followed by placement of a layer of den (Type O) Portland Cement Concrete (PCC). The challenge encountered with this type of bridge deck overlay is that the PCC must be mixed on-site, brought to the placement area and placed with specialized equipment. This adds considerably to the cost and limits contractor selection. A previous study (TR-427) showed that a dense PCC with high-range water reducers could successfully be used for bridge deck overlays using conventional equipment and methods. This current study evaluated the use of high performance PCC in place of a dense PCC for work on county bridges. High performance PCC uses fly ash and slag to replace some of the cement in the mix. This results in a workable PCC mix that cures to form a very low permeability overlay.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data collection to determine the rate of bond strength development between concrete overlays and existing pavements and the evaluation of nondestructive testing methods for determining concrete strength were the objectives of this study. Maturity meters and pulse velocity meters were employed to determine the rate of flexural strength gain and determine the time for opening of newly constructed pavements to traffic. Maturity measurements appear to provide a less destructive method of testing. Pulse velocity measurements do require care in the preparation of the test wells and operator care in testing. Both devices functioned well under adverse weather and construction conditions and can reduce construction traffic delay decisions. Deflection testing and strain gaging indicate differences in the reaction of the overlay and existing pavement under grouting versus nongrouted sections. Grouting did enhance the rate of bond development with Type I11 cement out performing the Type I1 grout section. Type I11 and Type I1 cement grouts enhanced resistance to cracking in uniformly supported pavements where joints are prepared prior to overlays achieving target flexural strengths. Torsional and direct shear testing provide additional ways of measuring bond development at different cure times. Detailed data analysis will be utilized by TRANSTEC, Inc. to develop a bonded overlay construction guidelines report.