42 resultados para Four-legged intersections
Resumo:
Red light running continues to be a serious safety concern for many communities in the United States. The Federal Highway Administration reported that in 2011, red light running accounted for 676 fatalities nationwide. Red light running crashes at a signalized intersections are more serious, especially in high speed corridors where speeds are above 35 mph. Many communities have invested in red light countermeasures including low-cost strategies (e.g. signal backplates, targeted enforcement, signal timing adjustments and improvement with signage) to high-cost strategies (e.g. automated enforcement and intersection geometric improvements). This research study investigated intersection confirmation lights as a low-cost strategy to reduce red light running violations. Two intersections in Altoona and Waterloo, Iowa were equipped with confirmation lights which targeted the through and left turning movements. Confirmation lights enable a single police officer to monitor a specific lane of traffic downstream of the intersection. A before-after analysis was conducted in which a change in red light running violations prior to- and 1 and 3 months after installation were evaluated. A test of proportions was used to determine if the change in red light running violation rates were statistically significant at the 90 and 95 percent levels of confidence. The two treatment intersections were then compared to the changes of red light running violation rates at spillover intersections (directly adjacent to the treatment intersections) and control intersections. The results of the analysis indicated a 10 percent reduction of red light running violations in Altoona and a 299 percent increase in Waterloo at the treatment locations. Finally, the research team investigated the time into red for each observed red light running violation. The analysis indicated that many of the violations occurred less than one second into the red phase and that most of the violation occurred during or shortly after the all-red phase.
Resumo:
It is commonly regarded that the overuse of traffic control devices desensitizes drivers and leads to disrespect, especially for low-volume secondary roads with limited enforcement. The maintenance of traffic signs is also a tort liability concern, exacerbated by unnecessary signs. The Federal Highway Administration’s (FHWA) Manual on Uniform Traffic Control Devices (MUTCD) and the Institute of Transportation Engineer’s (ITE) Traffic Control Devices Handbook provide guidance for the implementation of STOP signs based on expected compliance with right-of-way rules, provision of through traffic flow, context (proximity to other controlled intersections), speed, sight distance, and crash history. The approach(es) to stop is left to engineering judgment and is usually dependent on traffic volume or functional class/continuity of system. Although presently being considered by the National Committee on Traffic Control Devices, traffic volume itself is not given as a criterion for implementation in the MUTCD. STOP signs have been installed at many locations for various reasons which no longer (or perhaps never) met engineering needs. If in fact the presence of STOP signs does not increase safety, removal should be considered. To date, however, no guidance exists for the removal of STOP signs at two-way stop-controlled intersections. The scope of this research is ultra-low-volume (< 150 daily entering vehicles) unpaved intersections in rural agricultural areas of Iowa, where each of the 99 counties may have as many as 300 or more STOP sign pairs. Overall safety performance is examined as a function of a county excessive use factor, developed specifically for this study and based on various volume ranges and terrain as a proxy for sight distance. Four conclusions are supported: (1) there is no statistical difference in the safety performance of ultra-low-volume stop-controlled and uncontrolled intersections for all drivers or for younger and older drivers (although interestingly, older drivers are underrepresented at both types of intersections); (2) compliance with stop control (as indicated by crash performance) does not appear to be affected by the use or excessive use of STOP signs, even when adjusted for volume and a sight distance proxy; (3) crash performance does not appear to be improved by the liberal use of stop control; (4) safety performance of uncontrolled intersections appears to decline relative to stop-controlled intersections above about 150 daily entering vehicles. Subject to adequate sight distance, traffic professionals may wish to consider removal of control below this threshold. The report concludes with a section on methods and legal considerations for safe removal of stop control.
Resumo:
Citizens request the installation of roadway lighting in their communities based on several motivations, including the experience or perception that lighting improves traffic safety and reduces crime, while also providing a tangible benefit of taxpayer dollars at work. Roadway authority staff fully appreciate these citizen concerns; however, roadway lighting is expensive to install, supply energy to, and maintain in perpetuity. The installation of roadway lighting is only one of a number of strategies agencies have to address nighttime crash concerns. This research assists local agencies in deciding when, where, and how much rural intersection lighting to provide.
Resumo:
Commercially available instruments for road-side data collection take highly limited measurements, require extensive manual input, or are too expensive for widespread use. However, inexpensive computer vision techniques for digital video analysis can be applied to automate the monitoring of driver, vehicle, and pedestrian behaviors. These techniques can measure safety-related variables that cannot be easily measured using existing sensors. The use of these techniques will lead to an improved understanding of the decisions made by drivers at intersections. These automated techniques allow the collection of large amounts of safety-related data in a relatively short amount of time. There is a need to develop an easily deployable system to utilize these new techniques. This project implemented and tested a digital video analysis system for use at intersections. A prototype video recording system was developed for field deployment. A computer interface was implemented and served to simplify and automate the data analysis and the data review process. Driver behavior was measured at urban and rural non-signalized intersections. Recorded digital video was analyzed and used to test the system.
Resumo:
From Proposed Action: "The proposed action consists of reconstructing the East 1st Street/I-35 interchange with a Diverging Diamond interchange, widening I-35 from four (4) lanes to six (6) lanes, and widening East 1st Street from four (4) lanes to five (5) lanes from Delaware Avenue to Frisk Drive. The project also proposes to reconstruct the intersections of East 1st Street/Creekview Drive and East 1st Street/Frisk Drive."
Resumo:
The main objective of this study was to utilize light detection and ranging (LIDAR) technology to obtain highway safety-related information. The safety needs of older drivers in terms of prolonged reaction times were taken into consideration. The tasks undertaken in this study were (1) identification of crashes that older drivers are more likely to be involved in, (2) identification of highway geometric features that are important in such crashes, (3) utilization of LIDAR data for obtaining information on the identified highway geometric features, and (4) assessment of the feasibility of using LIDAR data for such applications. A review of previous research indicated that older drivers have difficulty negotiating intersections, and it was recognized that intersection sight triangles were critical to safe intersection negotiation. LIDAR data were utilized to obtain information on potential sight distance obstructions at six selected intersections located on the Iowa Highway 1 corridor by conducting in-office line-of-sight analysis. Crash frequency, older driver involvement, and data availability were considerations in the selection of the six intersections. Results of the in-office analysis were then validated by visiting the intersections in the field. Sixty-six potential sight distance obstructions were identified by the line-of-sight analysis, out of which 62 (89.8%) were confirmed while four (5.8%) were not confirmed by the video. At least three (4.4%) potential sight distance obstructions were discovered in the video that were not detected by the line-of-sight analysis. The intersection with the highest crash frequency involving older drivers was correctly found to have obstructions located within the intersection sight triangles. Based on research results, it is concluded that LIDAR data can be utilized for identifying potential sight distance obstructions at intersections. The safety of older drivers can be enhanced by locating and rectifying intersections with obstructions in sight triangles.
Resumo:
Several recent studies have demonstrated differences in safety between different types of left-turn phasing—protected, permitted, and protected/permitted phasing. The issue in question is whether older and younger drivers are more affected by a particular type of left-turn phasing at high-speed signalized intersections and whether they are more likely to contribute to a left-turn related crash under a specific type of left-turn phasing. This study evaluated the impact of different types of left-turn phasing on older and younger drivers at high-speed signalized intersections in Iowa. High-speed signalized intersections were of interest since oncoming speeds and appropriate gaps may be more difficult to judge for older drivers and those with less experience. A total of 101 intersections from various urban locations in Iowa with at least one intersecting roadway with a posted speed limit of 45 mph or higher were evaluated. Left-turn related crashes from 2001 to 2003 were evaluated. Left-turn crash rate and severity for young drivers (14- to 24-year-old), middle-age drivers (25- to 64-year-old), and older drivers (65 years and older) were calculated. Poisson regression was used to analyze left-turn crash rates by age group and type of phasing. Overall, left-turn crash rates indicated that protected phasing is much safer than protected/permitted and permitted phasing. Protected/permitted phasing had the highest left-turn crash rates overall.
Resumo:
Iowa Alcoholic Beverages Division Strategic Plan
Resumo:
Strategic Plan for the Iowa Insurance Division
Resumo:
This research project was intended to produce a strategy for addressing current and future access management problems on state highway routes located just outside urban areas that serve as major routes for commuting into and out of major employment centers in Iowa. There were two basic goals: (1) to develop a ranking system for identifying high-priority segments for access management treatments on primary highways outside metro and urban areas and (2) to focus efforts on routes that are major commuting routes at present and in the future. The project focused on four-lane expressways and two-lane arterials most likely to serve extensive commuter traffic. Available spatial and statistical data were used to identify existing and possible future problem corridors with respect to access management. The research team developed a scheme for ranking commuter routes based on their need for attention to access management. This project was able to produce rankings for corridors based on a variety of factors, including proportion of crashes that appear to be access-related, severity of those crashes, and potential for improvement along corridors. Frequency and loss were found to be highly rank correlated; because of this, these indicators were not used together in developing final priority rankings. Most of the highest ranked routes are on two-lane rural cross sections, but a few are four-lane expressways with at-grade private driveways and public road intersections. The most important conclusion of the ranking system is that many of the poor-performing corridors are located in a single Iowa Department of Transportation district near two urban areas--Des Moines and Ames. A comprehensive approach to managing access along commuting corridors should be developed first in this district since the potential benefits would be highest in that region.
Resumo:
Provision of left turn lanes is a major problem which lacks an objective approach. Various techniques and procedures in use have been reviewed. Traffic characteristics at typical Iowa intersections have been measured. A rational approach for inclusion of a left turn lane has been developed, based on relating the benefits to the road user to the cost of providing the added turing lane. An analysis of field data gathered under this project indicates that the use of theoretical distribution to describe vehicle headways is not applicable to rural Iowa two lane roads. As an alternate approach the mass of field data gathered were examined using multiple regression techniques to yield equations for predicting stops and delays. The benefit-cost ratio technique is recommended as the criterion for decision making.
Resumo:
Two lanes of a major four lane arterial street needed to be reconstructed in Cedar Rapids, Iowa. The traffic volumes and difficulty of detouring the traffic necessitated closure for construction be held to an absolute minimum. Closure of the intersections, even for one day, was not politically feasible. Therefore, Fast Track and Fast Track II was specified for the project. Fast Track concrete paving has been used successfully in Iowa since 1986. The mainline portion of the project was specified to be Fast Track and achieved the opening strength of 400 psi in less than twelve hours. The intersections were allowed to be closed between 6 PM and 6 AM. This could occur twice - once to remove the old pavement and place the base and temporary surface and the second time to pave and cure the new concrete. The contractor was able to meet these restrictions. The Fast Track II used in the intersections achieved the opening strength of 350 psi in six to seven hours. Two test sections were selected in the mainline Fast Track and two intersections were chosen to test the Fast Tract II. Both flexural and compression specimens were tested. Pulse velocity tests were conducted on the pavement and test specimens. Maturity curves were developed through monitoring of the temperatures. Correlations were performed between the maturity and pulse velocity and the flexural strengths. The project was successful in establishing the feasibility of construction at night, with no disruption of traffic in the daytime, using fast Track II. Both the Fast Track II pavements were performing well four years after construction.