37 resultados para Four wave mixing
Resumo:
Major highway concrete pavements in Iowa have exhibited premature deterioration attributed to effects of ettringite formation, alkali-silica expansive reactions, and to frost attack, or some combination of them. These pavements were constructed in the mid- 1980s as non-reinforced, dual-lane, roads ranging in thickness between 200 mm and 300 mm, with skewed joints reinforced with dowels. Deterioration was initially recognized with a darkening of joint regions, which occurred for some pavements as soon as four years after construction. Pavement condition ranges from severe damage to none, and there appeared to be no unequivocal materials or processing variables correlated with failure. Based upon visual examinations, petrographic evaluation, and application of materials models, the deterioration of concrete highway pavements in Iowa appear related to a freeze-thaw failure of the coarse aggregate and the mortar. Crack patterns sub-parallel to the concrete surface transecting the mortar fraction and the coarse aggregate are indicative of freeze-thaw damage of both the mortar and aggregate. The entrained air void system was marginal to substandard, and filling of some of the finer-sized voids by ettringite appears to have further degraded the air void system. The formation of secondary ettringite within the entrained air voids probably reflects a relatively high degree of concrete saturation causing the smaller voids to be filled with pore solution when the concrete freezes. Alkali-silica reaction (ASR) affects some quartz and shale in the fine aggregate, but is not considered to be a significant cause of the deterioration. Delayed ettringite formation was not deemed likely as no evidence of a uniform paste expansion was observed. The lack of field-observed expansion is also evidence against the ASR and DEF modes of deterioration. The utilization of fly ash does not appear to have affected the deterioration as all pavements with or without fly ash exhibiting substantial damage also exhibit significant filling of the entrained air void system, and specimens containing fly ash from sound pavements do not have significant filling. The influence of the mixture design, mixing, and placing must be evaluated with respect to development of an adequate entrained air void system, concrete homogeneity, longterm drying shrinkage, and microcracking. A high-sand mix may have contributed to the difficult mixture characteristics noted upon placement and exacerbate concrete heterogeneity problems, difficulty in developing an adequate entrained air void system, poor consolidation potential, and increased drying shrinkage and cracking. Finally, the availability of moisture must also be considered, as the secondary precipitation of ettringite in entrained air voids indicates they were at least partially filled with pore solution at times. Water availability at the base of the slabs, in joints, and cracks may have provided a means for absorbing water to a point of critical saturation.
Resumo:
A two-stage mixing process for concrete involves mixing a slurry of cementitious materials and water, then adding the slurry to coarse and fine aggregate to form concrete. Some research has indicated that this process might facilitate dispersion of cementitious materials and improve cement hydration, the characteristics of the interfacial transition zone (ITZ) between aggregate and paste, and concrete homogeneity. The goal of the study was to find optimal mixing procedures for production of a homogeneous and workable mixture and quality concrete using a two-stage mixing operation. The specific objectives of the study are as follows: (1) To achieve optimal mixing energy and time for a homogeneous cementitious material, (2) To characterize the homogeneity and flow property of the pastes, (3) To investigate effective methods for coating aggregate particles with cement slurry, (4) To study the effect of the two-stage mixing procedure on concrete properties, (5) To obtain the improved production rates. Parameters measured for Phase I included: heat of hydration, maturity, and rheology tests were performed on the fresh paste samples, and compressive strength, degree of hydration, and scanning electron microscope (SEM) imaging tests were conducted on the cured specimens. For Phases II and III tests included slump and air content on fresh concrete and compressive and tensile strengths, rapid air void analysis, and rapid chloride permeability on hardened concrete.
Resumo:
Reflective cracks form in pavements when hot-mix asphalt (HMA) overlays are placed over jointed and/or severely cracked rigid and flexible pavements. In the first part of the research, survival analysis was conducted to identify the most appropriate rehabilitation method for composite pavements and to evaluate the influence of different factors on reflective crack development. Four rehabilitation methods, including mill and fill, overlay, heater scarification (SCR), and rubblization, were analyzed using three performance indicators: reflective cracking, international roughness index (IRI), and pavement condition index (PCI). It was found that rubblization can significantly retard reflective cracking development compared to the other three methods. No significant difference for PCI was seen among the four rehabilitation methods. Heater scarification showed the lowest survival probability for both reflective cracking and IRI, while an overlay resulted in the poorest overall pavement condition based on PCI. In addition, traffic level was found not to be a significant factor for reflective cracking development. An increase in overlay thickness can significantly delay the propagation of reflective cracking for all four treatments. Soil types in rubblization pavement sites were assessed, and no close relationship was found between rubblized pavement performance and subgrade soil condition. In the second part of the research, the study objective was to evaluate the modulus and performance of four reflective cracking treatments: full rubblization, modified rubblization, crack and seat, and rock interlayer. A total of 16 pavement sites were tested by the surface wave method (SWM), and in the first four sites both falling weight deflectometer (FWD) and SWM were conducted for a preliminary analysis. The SWM gave close concrete layer moduli compared to the FWD moduli on a conventional composite pavement. However, the SWM provided higher moduli for the rubblized concrete layer. After the preliminary analysis, another 12 pavement sites were tested by the SWM. The results showed that the crack and seat method provided the highest moduli, followed by the modified rubblization method. The full rubblization and the rock interlayer methods gave similar, but lower, moduli. Pavement performance surveys were also conducted during the field study. In general, none of the pavement sites had rutting problems. The conventional composite pavement site had the largest amount of reflective cracking. A moderate amount of reflective cracking was observed for the two pavement sites with full rubblization. Pavements with the rock interlayer and modified rubblization treatments had much less reflective cracking. It is recommended that use of the modified rubblization and rock interlayer treatments for reflective cracking mitigation are best.
Resumo:
At present, there is little fundamental guidance available to assist contractors in choosing when to schedule saw cuts on joints. To conduct pavement finishing and sawing activities effectively, however, contractors need to know when a concrete mixture is going to reach initial set, or when the sawing window will open. Previous research investigated the use of the ultrasonic pulse velocity (UPV) method to predict the saw-cutting window for early entry sawing. The results indicated that the method has the potential to provide effective guidance to contractors as to when to conduct early entry sawing. The aim of this project was to conduct similar work to observe the correlation between initial setting and conventional sawing time. Sixteen construction sites were visited in Minnesota and Missouri over a two-year period. At each site, initial set was determined using a p-wave propagation technique with a commercial device. Calorimetric data were collected using a commercial semi-adiabatic device at a majority of the sites. Concrete samples were collected in front of the paver and tested using both methods with equipment that was set up next to the pavement during paving. The data collected revealed that the UPV method looks promising for early entry and conventional sawing in the field, both early entry and conventional sawing times can be predicted for the range of mixtures tested.
Resumo:
Summary of the IOWATER Program and workshops offered.
Resumo:
Iowa Alcoholic Beverages Division Strategic Plan
Resumo:
Strategic Plan for the Iowa Insurance Division