79 resultados para Entering Traffic.
Resumo:
This report provides a summary of the updates to the traffic signal content within the Iowa Statewide Urban Design and Specifications (SUDAS) Design Manual Chapter 13 and Standard Specifications Division 8. Major focal points included pole footing design, cabinets and controllers, monitoring systems, communications systems, and figure updates. This work was completed through a project task force with a variety of participants (contractors, Iowa Department of Transportation, city traffic engineers, consultant, vendors, and University research and support staff).
Resumo:
The National Concrete Pavement Technology Center, Iowa Department of Transportation, and Federal Highway Administration set out to demonstrate and document the design and construction of portland cement concrete (PCC) overlays on two-lane roadways while maintaining two-way traffic. An 18.82 mile project was selected for 2011 construction in northeast Iowa on US 18 between Fredericksburg and West Union. This report documents planning, design, and construction of the project and lessons learned. The work included the addition of subdrains, full-depth patching, bridge approach replacement, and drainage structural repair and cleaning prior to overlay construction. The paving involved surface preparation by milling to grade and the placement of a 4.5 inch PCC overlay and 4 foot of widening to the existing pavement. In addition, the report makes recommendations on ways to improve the process for future concrete overlays.
Resumo:
Iowa railroad traffic density.
Resumo:
Traffic volumes represented on this map are average volumes between major traffic generators: highway junctions, cities, recreational areas or high volume secondary roads.
Resumo:
The main goal of the research described in this report was to evaluate countermeasures that agencies can use to reduce speeds as drivers enter rural communities located on high-speed roadways. The objectives of this study were as follows: * Identify and summarize countermeasures used to manage speeds in transition zones * Demonstrate the effectiveness of countermeasures that are practical for high- to low-speed transition zones * Acquire additional information about countermeasures that may show promise but lack sufficient evidence of effectiveness * Develop an application toolbox to assist small communities in selecting appropriate transition zones and effective countermeasures for entrances to small rural communities The team solicited small communities that were interested in participating in the Phase II study and several communities were also recommended. The treatments evaluated were selected by carefully considering traffic-calming treatments that have been used effectively in other countries for small rural communities, as well as the information gained from the first phase of the project. The treatments evaluated are as follows: * Transverse speed bars * Colored entrance treatment * Temporary island * Radar-activated speed limit sign * Speed feedback sign The toolbox publication and four focused tech briefs also cover the results of this work.
Resumo:
Vehicle Traffic Map produced by the Iowa Department of Transportation.
Resumo:
Vehicle Traffic Map produced by the Iowa Department of Transportation.
Resumo:
Vehicle Traffic Map produced by the Iowa Department of Transportation.
Resumo:
Phase II of Improving Traffic Safety Culture in Iowa focuses on producing actions that will improve the traffic safety culture across the state, and involves collaboration among the three large public universities in Iowa: Iowa State University, University of Northern Iowa, and University of Iowa. More specifically, this second phase synthesizes the expert opinions solicited in Phase I with prevailing public views and/or opinions gathered from a follow-up survey on Iowa’s 2000 public opinion survey, which the University of Northern Iowa, Center for Social and Behavioral Research, administered. More recent data on the opinions of Iowans and of people nationally contrasted with past data will help better define the public’s position on top safety culture issues. This, in turn, will provide a better basis for developing actionable, fundable, and ultimately successful strategies that will make a tangible difference in improving traffic safety in Iowa.
Resumo:
Incentive/disincentive clauses (I/D) are designed to award payments to contractors if they complete work ahead of schedule and to deduct payments if they exceed the completion time. A previously unanswered question is, “Did the costs of the actual work zone impacts that were avoided justify the incentives paid?” This report answers that question affirmatively based on an evaluation of 20 I/D projects in Missouri from 2008 to 2011. Road user costs (RUC) were used to quantify work zone impacts and included travel delays, vehicle operating costs, and crash costs. These were computed using work zone traffic conditions for partial-closure projects and detour volumes and routes for full-closure projects. Conditions during construction were compared to after construction. Crash costs were computed using Highway Safety Manual methodology. Safety Performance Functions produced annual crash frequencies that were translated into crash cost savings. In considering an average project, the percentage of RUC savings was around 13% of the total contract amount, or $444,389 of $3,464,620. The net RUC savings produced was around $7.2 million after subtracting the approximately $1.7 million paid in incentives. In other words, for every dollar paid in incentives, approximately 5.3 dollars of RUC savings resulted. I/D provisions were very successful in saving RUC for projects with full-closure, projects in urban areas, and emergency projects. Rural, non-emergency projects successfully saved RUC but not at the same level as other projects. The I/D contracts were also compared to all Missouri Department of Transportation contracts for the same time period. The results show that I/D projects had a higher on-time completion percentage and a higher number of bids per call than average projects. But I/D projects resulted in 4.52% higher deviation from programmed costs and possibly more changes made after the award. A survey of state transportation departments and contractors showed that both agreed to the same issues that affect the success of I/D contracts. Legal analysis suggests that liquidated damages is preferred to disincentives, since enforceability of disincentives may be an issue. Overall, in terms of work zone impact mitigation, I/D contracts are very effective at a relatively low cost.
Resumo:
The focus of this report is a capacity analysis of two long-term urban freeway Work Zones. Work Zone #1 tapered four mainline lanes to two, using two separate tapers; Work Zone #2 tapered two mainline lanes to one. Work Zone throughput was analyzed throughout the day over multiple days and traffic operations conditions were analyzed up to a distance of five miles upstream of the Work Zone entrance. Historical data from pavement-embedded detectors were used to analyze traffic conditions. The database consisted of five-minute volume, speed and occupancy data collected from 78 detectors for a total of 50 days. Congestion during each analyzed Work Zone existed for more than fourteen hours each day; Work Zone impacts adversely affected freeway operations over distances of 3.7 to 4.2 miles. Speed and occupancy conditions further upstream were, however, not affected, or even improved due to significant trip diversion. Work Zone capacity was defined based on the maximum traffic flows observed over a one-hour period; throughput values were also compiled over longer periods of time when traffic was within 90% of the maximum observed one-hour flows, as well as over the multi-hour mid-day period. The Highway Capacity Manual freeway capacity definition based on the maximum observed 15-min period was not used, since it would have no practical application in estimating Work Zone throughput when congested conditions prevail for the majority of the hours of the day. Certain noteworthy changes took place for the duration of the analyzed Work Zones: per-lane throughput dropped; morning peak periods started earlier, evening peak periods ended later and lasted longer; mid-day volumes dropped accompanied by the highest occupancies of the day. Trip diversion was evident in lower volumes entering the analyzed freeway corridor, higher volumes using off-ramps and lower volumes using onramps upstream of the Work Zones. The majority of diverted traffic comprised smaller vehicles (vehicles up to 21 feet in length); combination truck volumes increased and their use of the median lane increased, contrary to smaller vehicles that shifted toward a heavier use of the shoulder lane.
Resumo:
Highway construction is among the most dangerous industries in the US. Internal traffic control design, along with how construction equipment and vehicles interact with the traveling public, have a significant effect on how safe a highway construction work zone can be. An integrated approach was taken to research work-zone safety issues and mobility, including input from many personnel, ranging from roadway designers to construction laborers and equipment operators. The research team analyzed crash data from Iowa work-zone incident reports and Occupational Safety and Health Administration data for the industry in conjunction with the results of personal interviews, a targeted work-zone ingress and egress survey, and a work-zone pilot project.
Resumo:
The Iowa Motorcycle Operator Manual states that when a motorcycle and another vehicle collide, more than half of these crashes are caused by drivers entering the rider’s right-of-way. Furthermore, in crashes with motorcyclists, drivers often say they never saw the motorcycle. Therefore, increasing motorcycle conspicuity could help address these issues, resulting in fewer crashes (and injuries and damage).
Resumo:
This map shows railroad traffic usage by Iowa Rail Carriers.
Resumo:
The main goal of the research described in this report was to evaluate countermeasures that agencies can use to reduce speeds as drivers enter rural communities located on high-speed roadways. The objectives of this study were as follows: * Identify and summarize countermeasures used to manage speeds in transition zones * Demonstrate the effectiveness of countermeasures that are practical for high- to low-speed transition zones * Acquire additional information about countermeasures that may show promise but lack sufficient evidence of effectiveness * Develop an application toolbox to assist small communities in selecting appropriate transition zones and effective countermeasures for entrances to small rural communities The team solicited small communities that were interested in participating in the Phase II study and several communities were also recommended. The treatments evaluated were selected by carefully considering traffic-calming treatments that have been used effectively in other countries for small rural communities, as well as the information gained from the first phase of the project. The treatments evaluated are as follows: * Transverse speed bars * Colored entrance treatment * Temporary island * Radar-activated speed limit sign * Speed feedback sign The toolbox publication and four focused tech briefs also cover the results of this work.