60 resultados para Drinking water.
Resumo:
Audit report on the Iowa Water Pollution Control Works Financing Program and the Iowa Drinking Water Facilities Financing Program, joint programs of the Iowa Finance Authority and the Iowa Department of Natural Resources for the year ended June 30, 2013
Resumo:
This report contains information about Iowa's public drinking water program for the calendar year 2013. Included in the report are descriptions of Iowa's systems, monitoring and reporting requirements of the systems, and violations incurred during the year. This report meets the federal Safe Drinking Water Act's requirement of an annual report on violations of national primary drinking water regulations by public water supply systems in Iowa.
Resumo:
Audit report on the Iowa Water Pollution Control Works Financing Program and the Iowa Drinking Water Facilities Financing Program, joint programs of the Iowa Finance Authority and the Iowa Department of Natural Resources, for the year ended June 30, 2014
Resumo:
This report contains information about Iowa's public drinking water program for the calendar year 2014. Included in the report are descriptions of Iowa's systems, monitoring and reporting requirements of the systems, and violations incurred during the year. This report meets the federal Safe Drinking Water Act's requirement of an annual report on violations of national primary drinking water regulations by public water supply systems in Iowa.
Resumo:
Audit report on the Iowa Water Pollution Control Works Financing Program (Clean Water Program) and the Iowa Drinking Water Facilities Financing Program (Drinking Water Program), joint programs of the Iowa Finance Authority and the Iowa Department of Natural Resources, for the year ended June 30, 2005
Resumo:
Audit report on the Iowa Water Pollution Control Works Financing Program (Clean Water Program) and the Iowa Drinking Water Facilities Financing Program (Drinking Water Program), joint programs of the Iowa Finance Authority and the Iowa Department of Natural Resources, for the year ended June 30, 2004
Resumo:
This letter has been prepared as a consultation to evaluate human health impacts from the use of private drinking water wells in Clinton County, Iowa. These wells are located just to the west of Highway 67 and Camanche, Iowa and near 9th Street, 31st Avenue, and 37th Avenue. The wells are also located to the south of contaminated sites known as Chemplex and PCS Nitrogen, and near former disposal areas known as Todtz Landfill and Doty Landfill. The Iowa Department of Public Health’s priority is to ensure the Clinton County community has the best information possible to safeguard its health. That information is included in the following paragraphs.
Resumo:
This report contains information about Iowa's public drinking water program for the calendar year 2015. Included in the report are descriptions of Iowa's systems, monitoring and reporting requirements of the systems, and violations incurred during the year. This report meets the federal Safe Drinking Water Act's requirement of an annual report on violations of national primary drinking water regulations by public water supply systems in Iowa.
Resumo:
Audit report on the Iowa Water Pollution Control Works Financing Program and the Iowa Drinking Water Facilities Financing Program, joint programs of the Iowa Finance Authority and the Iowa Department of Natural Resources for the year ended June 30, 2015
Resumo:
This final report to the Iowa Watershed Improvement Review Board by the City of Remsen Utilities consists of accomplishments made by the Remsen Utilities as per this agreement. The City of Remsen Utilities did in fact purchase approximately 27 acres of land lying upstream of the city’s water well field. The land was purchased from Mr. Larry Rodesch and Mr. Rich Harpenau for the purpose of removing nitrates from Remsen’s water source and establishing native prairie grasses to assist in this removal.
Resumo:
Lime sludge, an inert material mostly composed of calcium carbonate, is the result of softening hard water for distribution as drinking water. A large city such as Des Moines, Iowa, produces about 30,700 tons of lime sludge (dry weight basis) annually (Jones et al., 2005). Eight Iowa cities representing, according to the United States (U.S.) Census Bureau, 23% of the state’s population of 3 million, were surveyed. They estimated that they collectively produce 64,470 tons of lime sludge (dry weight basis) per year, and they currently have 371,800 tons (dry weight basis) stockpiled. Recently, the Iowa Department of Natural Resources directed those cities using lime softening in drinking water treatment to stop digging new lagoons to dispose of lime sludge. Five Iowa cities with stockpiles of lime sludge funded this research. The research goal was to find useful and economical alternatives for the use of lime sludge. Feasibility studies tested the efficacy of using lime sludge in cement production, power plant SOx treatment, dust control on gravel roads, wastewater neutralization, and in-fill materials for road construction. Applications using lime sludge in cement production, power plant SOx treatment, and wastewater neutralization, and as a fill material for road construction showed positive results, but the dust control application did not. Since the fill material application showed the most promise in accomplishing the project’s goal within the time limits of this research project, it was chosen for further investigation. Lime sludge is classified as inorganic silt with low plasticity. Since it only has an unconfined compressive strength of approximately 110 kPa, mixtures with fly ash and cement were developed to obtain higher strengths. When fly ash was added at a rate of 50% of the dry weight of the lime sludge, the unconfined strength increased to 1600 kPa. Further, friction angles and California Bearing Ratios were higher than those published for soils of the same classification. However, the mixtures do not perform well in durability tests. The mixtures tested did not survive 12 cycles of freezing and thawing and wetting and drying without excessive mass and volume loss. Thus, these mixtures must be placed at depths below the freezing line in the soil profile. The results demonstrated that chemically stabilized lime sludge is able to contribute bulk volume to embankments in road construction projects.
Resumo:
Monitoring of nitrogen and phosphorus in streams and rivers throughout Iowa is an essential element of the Iowa Nutrient Reduction Strategy (INRS). Sampling and analysis of surface water is necessary to develop periodic estimates of the amounts of nitrogen and phosphorus transported from Iowa. Surface and groundwater monitoring provides the scientific evidence needed to document the effectiveness of nutrient reduction practices and the impact they have on water quality. Lastly, monitoring data informs decisions about where and how best to implement nutrient reduction practices, by both point sources and nonpoint sources, to provide the greatest benefit at the least cost. The impetus for this report comes from the Water Resources Coordination Council (WRCC) which states in its 2014‐15 Annual Report “Efforts are underway to improve understanding of the multiple nutrient monitoring efforts that may be available and can be compared to the nutrient WQ monitoring framework to identify opportunities and potential data gaps to better coordinate and prioritize future nutrient monitoring efforts.” This report is the culmination of those efforts.
Iowa Nutrient Reduction Strategy stream water quality monitoring in Iowa : measuring progress (2016)
Resumo:
The Iowa Nutrient Reduction Strategy (NRS) is a research- and technology-based approach to assess and reduce nutrients—nitrogen and phosphorus—delivered to Iowa waterways and the Gulf of Mexico by 45 percent. To measure progress, researchers track many different factors, from inputs (e.g. funding) and the human domain (e.g. farmer perspectives) to land management (e.g. on-farm practices) and water quality. Monitoring Iowa streams provides valuable insight into measuring water quality progress and the reduction of surface water nutrient loss. The Iowa Nutrient Reduction Strategy (NRS) aims to reduce the load, or total amount (e.g. tons), of nutrients lost annually. Researchers calculate the load from water monitoring results, which measure concentration combined with stream flow.
Resumo:
More than 200 lakes, streams and rivers are on Iowa’s impaired waters list. Pollutants prevent these waters from supporting aquatic life, or from being used for drinking water or for full body recreational contact, like swimming. While improving Iowa’s water quality may seem a daunting task, two southern Iowa lakes show that it can be done.
Resumo:
For years, Cedar Lake has been there for the Winterset community, providing drinking water, offering recreational opportunities, teaching students outdoors lessons and giving wildlife a home. With water quality a serious concern, it is now our turn to be there for the lake.