36 resultados para Condition-based maintenance


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on previous National Bridge Inventory data, the state of Iowa has nearly 20,000 bridges on low-volume roads (LVRs). Thus, these bridges are the responsibility of the county engineers. Of the bridges on the county roads, 24 percent are structurally deficient and 5 percent are functionally obsolete. A large number of the older bridges on the LVRs are built on timber piling with timber back walls. In many cases, as timber abutments and piers age, the piling and back wall planks deteriorate at a rate faster than the bridge superstructure. As a result, a large percentage of the structurally deficient bridges on LVRs are classified as such because of the condition of the timber substructure elements. As funds for replacing bridges decline and construction costs increase, effective rehabilitation and strengthening techniques for extending the life of the timber substructures in bridges with structurally sound superstructures has become even more important. Several counties have implemented various techniques to strengthen/repair damaged piling, however, there is minimal data documenting the effectiveness of these techniques. There are numerous instances where cracked and failed pilings have been repaired. However, there are no experimental data on the effectiveness of the repairs or on the percentage of load transferred from the superstructure to the sound pile below. To address the research needs, a review and evaluation of current maintenance and rehabilitation methods was completed. Additionally, a nationwide survey was conducted to learn the methods used beyond Iowa. Field investigation and live-load testing of bridges with certain Iowa methods was completed. Lastly, laboratory testing of new strengthening and rehabilitation methods was performed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil consolidation and erosion caused by roadway runoff have exposed the upper portions of steel piles at the abutments of numerous bridges, leaving them susceptible to accelerated corrosion rates due to the abundance of moisture, oxygen, and chlorides at these locations. This problem is compounded by the relative inaccessibility of abutment piles for close-up inspection and repair. The objective of this study was to provide bridge owners with recommendations for effective methods of addressing corrosion of steel abutment piles in existing and future bridges A review of available literature on the performance and protection of steel piles exposed to a variety of environments was performed. Eight potential coating systems for use in protecting existing and/or new piles were selected and subjected to accelerated corrosion conditions in the laboratory. Two surface preparation methods were evaluated in the field and three coating systems were installed on three piles at an existing bridge where abutment piles had been exposed by erosion. In addition, a passive cathodic protection (CP) system using sacrificial zinc anodes was tested in the laboratory. Several trial flowable mortar mixes were evaluated for use in conjunction with the CP system. For existing abutment piles, application of a protective coating system is a promising method of mitigating corrosion. Based on its excellent performance in accelerated corrosion conditions in the laboratory on steel test specimens with SSPC-SP3, -SP6, and -SP10 surface preparations, glass flake polyester is recommended for use on existing piles. An alternative is epoxy over organic zinc rich primer. Surface preparation of existing piles should include abrasive blast cleaning to SSPC-SP6. Although additional field testing is needed, based on the results of the laboratory testing, a passive CP system could provide an effective means of protecting piles in existing bridges when combined with a pumped mortar used to fill voids between the abutment footing and soil. The addition of a corrosion inhibitor to the mortar appears to be beneficial. For new construction, shop application of thermally sprayed aluminum or glass flake polyester to the upper portion of the piles is recommended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most local agencies in Iowa currently make their pavement treatment decisions based on their limited experience due primarily to lack of a systematic decision-making framework and a decision-aid tool. The lack of objective condition assessment data of agency pavements also contributes to this problem. This study developed a systematic pavement treatment selection framework for local agencies to assist them in selecting the most appropriate treatment and to help justify their maintenance and rehabilitation decisions. The framework is based on an extensive literature review of the various pavement treatment techniques in terms of their technical applicability and limitations, meaningful practices of neighboring states, and the results of a survey of local agencies. The treatment selection framework involves three different steps: pavement condition assessment, selection of technically feasible treatments using decision trees, and selection of the most appropriate treatment considering the return-on-investment (ROI) and other non-economic factors. An Excel-based spreadsheet tool that automates the treatment selection framework was also developed, along with a standalone user guide for the tool. The Pavement Treatment Selection Tool (PTST) for Local Agencies allows users to enter the severity and extent levels of existing distresses and then, recommends a set of technically feasible treatments. The tool also evaluates the ROI of each feasible treatment and, if necessary, it can also evaluate the non-economic value of each treatment option to help determine the most appropriate treatment for the pavement. It is expected that the framework and tool will help local agencies improve their pavement asset management practices significantly and make better economic and defensible decisions on pavement treatment selection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With an annual pavement marking program of approximately $2 million and another $750 thousand invested in maintenance of durable markings each year, the Iowa DOT is seeking every opportunity to provide all-year markings staying in acceptable condition under all weather conditions. The goal of this study is to analyze existing pavement marking practices and to develop a prototype Pavement Marking Management System (PMMS). This report documents the first two phases of a three-phase research project. Phase I includes an overview of the Iowa DOTâs existing practices and a literature review regarding pavement marking practices in other states. Based on this information, a work plan was developed for Phases II and III of this study. Phase II organized the key components necessary to develop a prototype PMMS for the Iowa DOT. The two primary components are (1) performance/life cycle curves for pavement marking products, and (2) an application matrix tailored to the pavement marking products and roadway and environmental conditions faced by the Iowa DOT. Both components will continue to be refined and tailored to Iowa materials and conditions as more performance data becomes available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report documents Phase III of a four-phase project. The goals of the project are to study the feasibility of using advanced technology from other industries to improve he efficiency and safety of winter highway maintenance vehicle operations, and to provide travelers with the level of service defined by policy during the winter season at the least cost to the taxpayers. The results of the first phase of the research were documented in the Concept Highway Maintenance Vehicle Final Report: Phase One dated April 1997, which describes the desirable functions of a concept maintenance vehicle and evaluates its feasibility. Phase I concluded by establishing the technologies that would be assembled and tested on the prototype vehicles in Phase II. The primary goals of phase II were to install the selected technologies on the prototype winter maintenance vehicles and to conduct proof of concept in advance of field evaluations planned for Phase III. This Phase III final report documents the work completed since the end of Phase II. During this time period, the Phase III work plan was completed and the redesigned friction meter was field tested. A vendor meeting was held to discuss future private sector participation and the new design for the Iowa vehicle. In addition, weather and roadway condition data were collected from the roadway weather information systems at selected sites in Iowa and Minnesota, for comparison to the vehicles' onboard temperature sensors. Furthermore, the team received new technology, such as the mobile Frensor unit, for bench testing and later installation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This booklet is a compilation of notes taken during motor grader operators workshops held at some 20 different locations throughout Iowa during the last two years. It is also the advice of 16 experienced motor grader operators and maintenance foremen (from 14 different counties around Iowa), who serve as instructors and assistant instructors at the "MoGo" workshops. The instructors have all said that they learn as much from the operators who attend the workshops as they impart. Motor grader operators from throughout Iowa have shown us new, innovative and better ways of maintaining gravel roads. This booklet is an attempt to pass on some of these "tips" that we have gathered from Iowa operators. It will need to be revised, corrected, and added to based on the advice we get from you, the operators who do the work here in Iowa.