42 resultados para Clean rooms.
Resumo:
The field testing of the noncorrosive alternative deicing agent, calcium magnesium acetate is described. Seventy three tons were produced of one part CMA and three parts sand deicer which was field tested on I-280 from I-80 to the Mississippi River (7,000 ADT with 50% trucks). A comparative application was made with one part sand and one part sodium chloride. The study found that CMA deicer required a longer time for the pavement to reach normal conditions, and 20-25% more CMA deicer to provide the desired deicing. It was concluded that the CMA deicer was not as dependable as the sodium chloride deicing agent, and it was more difficult to clean up the equipment for spreading the CMA deicer.
Resumo:
The purpose of this research project is to determine if (1) epoxy lane markings will last an entire winter season without replacement, (2) epoxy lane marking is an economical alternative to standard paint on high-traffic multi-lane roadways where lane changing is frequent, and (3) there are worthwhile benefits derived from thorough cleaning of the pavement surface before painting. The success of epoxy lane marking depends on the success of the equipment with which it is mixed and applied. The epoxy lane marking material, if properly mixed and placed on a clean surface, has the durability required to withstand a high traffic volume and frequent lane changes for at least one year.
Resumo:
The earliest overall comprehensive work on the use of fly ash in concrete was reported by Davis and Associates of the University of California in 1937. Since that time there have been numerous applications of the use and varying proportions of fly ash in portland cement concrete mixes. Fly ash is a pozzolanic powdery by-product of the coal combustion process which is recovered from flue gases and is generally associated with electric power generating plants. Environmental regulations enacted in recent years have required that fly ash be removed from the flue gases to maintain clean air standards. This has resulted in an increased volume of high quality fly ash that is considered a waste product or a by-product that can be utilized in products such as portland cement concrete. There are several sources of the high quality fly ash located in Iowa currently producing a combined total of 281,000 tons of material annually. Due to recent cement shortages and the rapidly increasing highway construction costs, the Iowa Department of Transportation has become interested in utilizing fly ash in portland cement concrete paving mixes. A preliminary review of the Iowa Department of Transportation Materials Laboratory study indicates that a substitution of fly ash for portland cement, within limits, is ·not detrimental to the overall concrete quality. Also the use of fly ash in concrete would reduce the cement consumption as well as provide a potential cost savings in areas where high quality fly ash is available without excessive transportation costs. The previously expressed concerns have shown the need for a research project to develop our knowledge of fly ash replacement in the Iowa Department of Transportation portland cement concrete paving mixes.
Resumo:
This research, initiated in October 1992, was located at the intersection of Blairs Ferry Road and Lindale Drive in the City of Marion. The wall is located on the southeast corner of the intersection. Reinforced retaining wall construction started with a five inch base of roadstone with one inch of sand for leveling purposes. One and one-half to two feet of one inch clean stone was placed behind the blocks. A four inch perforated plastic pipe was placed approximately nine inches from the bottom of the one inch clean stone. The Tenswal, tensar geogrid was placed at every third layer. Openings in the Tenswal are hooked over plastic dowels in the blocks. The tenswal reaches from the face of the wall back 5' to 8'. The cost for constructing this wall was $124,400. The wall has performed well for the past five years. The wall improves the aesthetics of a high traffic volume intersection of an urban area. Many positive comments have been received by the city regarding its appearance. The City of Marion has been pleased with the wall and has used this type of wall on subsequent projects.
Resumo:
The earliest overall comprehensive work on the use of fly ash in concrete was reported by Davis and Associates of the University of California in 1937. Since that time, there have been numerous applications of the use and varying propertions of fly ash in portland cement concrete mixes. Fly ash is a pozzolanic powdery by-product of the coal combustion process which is recovered from flue gases and is, generally associated with electric power generating plants. Environmental regulations enacted in recent years have required that fly ash be removed from the flue gases to maintain clean air standards. This has resulted in an increased volume of high quality fly ash that is considered a waste product or a by-product that can be utilized in products such as portland cement concrete. There are several sources of the high quality fly ash located in Iowa currently producing a combined total of 281,000 tons of material annually.
Resumo:
Over the past several years we conducted a comprehensive study on the pore systems of limestones used as coarse aggregate in portland cement concrete (pee) and their relationship to freeze-thaw aggregate failure. A simple test called the Iowa Pore Index Test was developed and used to identify those coarse aggregates that had freeze-thaw susceptible pore systems. Basically, it identified those aggregates that could take on a considerable amount of water but only at a slow rate. The assumption was that if an aggregate would take on a considerable amount of water at a slow rate, its pore system would impede the outward movement of water through a critically saturated particle during freezing, causing particle fracture. The test was quite successful when used to identify aggregates containing susceptible pore systems if the aggregates were clean carbonates containing less than 2% or 3% insolubles. The correlation between service record, ASTM C666B and the pore index test was good, but not good enough. It became apparent over the past year that there were factors other than the pore system that could cause an aggregate to fail when used in pee. The role that silica and clay play in aggregate durability was studied.
Resumo:
The purpose of this investigation was to evaluate the Compensatory Wetland Mitigation Program at the Iowa Department of Transportation (DOT) in terms of regulatory compliance. Specific objectives included: 1) Determining if study sites meet the definition of a jurisdictional wetland. 2) Determining the degree of compliance with requirements specified in Clean Water Act Section 404 permits. A total of 24 study sites, in four age classes were randomly selected from over 80 sites currently managed by the Iowa DOT. Wetland boundaries were delineated in the field and mitigation compliance was determined by comparing the delineated wetland acreage at each study site to the total wetland acreage requirements specified in individual CWA Section 404 permits. Of the 24 sites evaluated in this study, 58 percent meet or exceed Section 404 permit requirements. Net gain ranged from 0.19 acre to 27.2 acres. Net loss ranged from 0.2 acre to 14.6 acres. The Denver Bypass 1 site was the worst performer, with zero acres of wetland present on the site and the Akron Wetland Mitigation Site was the best performer with slightly more than 27 acres over the permit requirement. Five of the 10 under-performing sites are more than five years post construction, two are five years post construction, one is three years post construction and the remaining two are one year post construction. Of the sites that meet or exceed permit requirements, approximately 93 percent are five years or less post construction and approximately 43 percent are only one year old. Only one of the 14 successful sites is more than five years old. Using Section 404 permit acreage requirements as the criteria for measuring success, 58 percent of the wetland mitigation sites investigated as part of this study are successful. Using net gain/loss as the measure of success, the Compensatory Wetland Mitigation Program has been successful in creating/restoring nearly 44 acres of wetland over what was required by permits.
Resumo:
Iowa is blessed with generally clean air, fertile soil, and abundant water resources. All are linked and each is vital to both our state’s economic vitality and our citizens' quality of life. Recent interest in water monitoring by citizens, the governor, and the state legislature has significantly increased financial resources directed at monitoring within the state. It also represents an opportunity to review our monitoring program and take a fresh look at why we monitor, what we monitor and how we monitor. A review of historical monitoring efforts for the state is provided in this plan.
Resumo:
The following document serves two purposes. First, the Environmental Protection Agency (EPA) requires a state to develop an approved Non-point Source Management Plan (NPSMP or Plan) that encompasses the nine key elements, described in full in Appendix A, to be eligible for federal Clean Water Act Section 319 funding. Second, the Plan serves as a representation of Iowa’s vision, goals, objectives and potential action steps to reduce non-point source pollution and improve water quality over the next five to ten years. This plan is not intended to be, nor should it be, limited to the Department of Natural Resources or Iowa’s Section 319 Program, but rather reflects the collective efforts and intents of the core partners and stakeholder groups that worked together to develop the goals identified herein and programmatic means of achieving those goals.
Resumo:
Brushy Creek is a tributary of the Raccoon River, which is a regular source of drinking water for over 400,000 Iowans. Regular monitoring by Des Moines Water Works (DMWW) and Agriculture’s Clean Water Alliance (ACWA) over the last eight years has shown the stream to be highly impaired for coliform bacteria and nitrate. Both Brushy Creek and the Raccoon River are on the 303(d) impaired waterbody list. A December 2005 fish kill in Brushy Creek resulted in administrative actions against seven livestock producers. Several open feed lots exist in the watershed. The community of Roselle (in the Brushy Creek watershed) has been identified by IDNR as unsewered, and many dwellings throughout the watershed discharge untreated human waste. No Watershed Improvement Association (WIA) exists in this sparsely-populated area. This outcome-based project will: • Enhance nutrient and manure management to reduce agricultural inputs to the stream. • Assess the amount of human waste reaching the stream from Roselle. • Engage and inform local residents so a WIA can be formed. • Monitor performance through a rigorous water and soil testing program. This project embraces a concept of participation from all levels of government, commodity organizations, and the private sector. The largest drinking water utility in the state will lead and administer this effort. The participating parties will work to establish a functioning WIA so that progress achieved through this project will be robust and long-lasting. The participants believe this will be the most effective approach to correct the situation, and will serve as a model for other problem watersheds throughout the state.
Resumo:
With the Saylor Creek Watershed Improvement Project, Iowa Heartland RC&D and other area stakeholders have an opportunity to display how "best management practices" (BMPs) can reduce storm water runoff and improve the quality of that runoff in an urban setting. Conservation design is a uew approach to storm water management that addresses the negative impacts of storm water runoff and turns them into a positive. The master plan for the Prairie Trail development surrounding the watershed project will incorporate bioretention cells, bioswales, buffer strips, rain gardens, as well as native plant landscaping to slow storm water runoff and naturally clean sediment out of the water before it reaches Saylor Creek. In addition to conservation design elements, the project will utilize storm water detention ponds and creek bed restoration to develop a complete storm water "treatment train" system within Prairie Trail. The extensive use of conservation storm water management for Prairie Trail is unique for urban development in Iowa.
Resumo:
The Dickinson SWCD is applying for $486,800 over three years from the Watershed Improvement Fund to enhance water quality in Dickinson County through an impairment-based, locally directed watershed improvement project dealing specifically with storm water runoff. The LID Project will provide a cost share incentive and technical expertise to individual and business owners in specially targeted districts who are willing to implement low impact development techniques such as rain gardens, bioswales, pervious paving to reduce storm water runoff from their properties. Goals for the project include: 1) Defining and prioritizing urban watersheds in the Iowa Great Lakes region for implementation of Low Impact Development Practices; 2) Providing technical expertise in the form of a graduate assistant/project manager to design and oversee construction; 3) Continuing public education of such practices and their local existence through project kiosk, brochures, County Naturalist programs, local cable television shows, tours and other interactions of the Clean Water Alliance with its 50 partners in the area concerned about water quality; and 4) Completing 125 separate projects over a three year period.