145 resultados para Automobile driving on highways


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Construction zones pose a significant threat to both workers and drivers causing numerous injuries and deaths each year. Innovations in work zone safety could reduce these numbers. However, implementing work zone interventions before they are validated can undermine rather than enhance safety. The objective of this research is to demonstrate how driving simulators can be used to evaluate the effect of various work zone interventions on driver performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Iowa Transportation Commission (Commission) and Iowa Department of Transportation (Iowa DOT) develop Iowa’s Five-Year Transportation Improvement Program (Five-Year Program) to inform Iowans of planned investments in our state’s multi-modal transportation system. The Five-Year Program is typically updated and approved each year in June. The Five-Year Program encompasses investments in aviation, transit, railroads, trails, and highways. This brochure describes the programming process used by the Commission and Iowa DOT to develop the highway section of the Five-Year Program. Each day Iowans are affected by some facet of highway transportation, whether it is to get to work or a medical appointment, receive mail, allow groceries and other goods to be stocked on local shelves, or the many other ways highways keep people, goods and services moving in our state. Iowa’s interstate and primary highways managed by the Iowa DOT are an important part of our personal mobility and state’s economy. They also provide essential connections to Iowa’s secondary roads and city streets. The process of making the critical decisions about what investments will be made to preserve and expand the state-managed highway network is complex. It involves input from a wide range of individuals and organizations, and is based on an expansive programming process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vibration-based damage identification (VBDI) techniques have been developed in part to address the problems associated with an aging civil infrastructure. To assess the potential of VBDI as it applies to highway bridges in Iowa, three applications of VBDI techniques were considered in this study: numerical simulation, laboratory structures, and field structures. VBDI techniques were found to be highly capable of locating and quantifying damage in numerical simulations. These same techniques were found to be accurate in locating various types of damage in a laboratory setting with actual structures. Although there is the potential for these techniques to quantify damage in a laboratory setting, the ability of the methods to quantify low-level damage in the laboratory is not robust. When applying these techniques to an actual bridge, it was found that some traditional applications of VBDI methods are capable of describing the global behavior of the structure but are most likely not suited for the identification of typical damage scenarios found in civil infrastructure. Measurement noise, boundary conditions, complications due to substructures and multiple material types, and transducer sensitivity make it very difficult for present VBDI techniques to identify, much less quantify, highly localized damage (such as small cracks and minor changes in thickness). However, while investigating VBDI techniques in the field, it was found that if the frequency-domain response of the structure can be generated from operating traffic load, the structural response can be animated and used to develop a holistic view of the bridge’s response to various automobile loadings. By animating the response of a field bridge, concrete cracking (in the abutment and deck) was correlated with structural motion and problem frequencies (i.e., those that cause significant torsion or tension-compression at beam ends) were identified. Furthermore, a frequency-domain study of operational traffic was used to identify both common and extreme frequencies for a given structure and loading. Common traffic frequencies can be compared to problem frequencies so that cost-effective, preventative solutions (either structural or usage-based) can be developed for a wide range of IDOT bridges. Further work should (1) perfect the process of collecting high-quality operational frequency response data; (2) expand and simplify the process of correlating frequency response animations with damage; and (3) develop efficient, economical, preemptive solutions to common damage types.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For most people, highway engineering, design and right of way acquisition are not of immediate concern. However, when you own or rent property that will be affected by highway construction, you begin to consider road building from a different and personal viewpoint. Right of way is the land on which highways are built. The amount of land needed depends on the engineering standards that must be met for the type of highway that will be built or improved. This booklet will acquaint property owners, tenants and the public with the procedures the Iowa Department of Transportation follows in acquiring right of way for a highway. It is not a source of technical definitions or legal advice. Further, it is not intended to establish a legal standard.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In response to the mandate on Load and Resistance Factor Design (LRFD) implementations by the Federal Highway Administration (FHWA) on all new bridge projects initiated after October 1, 2007, the Iowa Highway Research Board (IHRB) sponsored these research projects to develop regional LRFD recommendations. The LRFD development was performed using the Iowa Department of Transportation (DOT) Pile Load Test database (PILOT). To increase the data points for LRFD development, develop LRFD recommendations for dynamic methods, and validate the results of LRFD calibration, 10 full-scale field tests on the most commonly used steel H-piles (e.g., HP 10 x 42) were conducted throughout Iowa. Detailed in situ soil investigations were carried out, push-in pressure cells were installed, and laboratory soil tests were performed. Pile responses during driving, at the end of driving (EOD), and at re-strikes were monitored using the Pile Driving Analyzer (PDA), following with the CAse Pile Wave Analysis Program (CAPWAP) analysis. The hammer blow counts were recorded for Wave Equation Analysis Program (WEAP) and dynamic formulas. Static load tests (SLTs) were performed and the pile capacities were determined based on the Davisson’s criteria. The extensive experimental research studies generated important data for analytical and computational investigations. The SLT measured load displacements were compared with the simulated results obtained using a model of the TZPILE program and using the modified borehole shear test method. Two analytical pile setup quantification methods, in terms of soil properties, were developed and validated. A new calibration procedure was developed to incorporate pile setup into LRFD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vehicle Traffic Map produced by the Iowa Department of Transportation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crash Rates and Crash Densities on Secondary Roads in Iowa by Surface Type produced by the Iowa Department of Transportation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crash Rates and Crash Densities on Secondary Roads in Iowa by Functional Class produced by the Iowa Department of Transportation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report documents Phase IV of the Highway Maintenance Concept Vehicle (HMCV) project, a pooled fund study sponsored by the Departments of Transportation of Iowa, Pennsylvania, and Wisconsin. This report provides the background, including a brief history of the earlier phases of the project, a systems overview, and descriptions of the research conducted in Phase IV. Finally, the report provides conclusions and recommendations for future research. Background The goal of the Highway Maintenance Concept Vehicle Pooled Fund Study is to provide travelers with the level of service defined by policy during the winter season at the least cost to taxpayers. This goal is to be accomplished by using information regarding actual road conditions to facilitate and adjust snow and ice control activities. The approach used in this study was to bring technology applications from other industries to the highway maintenance vehicle. This approach is evolutionary in that as emerging technologies and applications are found to be acceptable to the pooled fund states and as they appear that to have potential for supporting the study goals they become candidates for our research. The objective of Phase IV is to: Conduct limited deployment of selected technologies from Phase III by equipping a vehicle with proven advanced technologies and creating a mobile test laboratory for collecting road weather data. The research quickly pointed out that investments in winter storm maintenance assets must be based on benefit/cost analysis and related to improving level of service. For example, Iowa has estimated the average cost of fighting a winter storm to be about $60,000 to $70,000 per hour typically. The maintenance concept vehicle will have advanced technology equipment capable of applying precisely the correct amount of material, accurately tailored to the existing and predicted pavement conditions. Hence, a state using advanced technology could expect to have a noticeable impact on the average time taken to establish the winter driving service level. If the concept vehicle and data produced by the vehicle are used to support decision-making leading to reducing material usage and the average time by one hour, a reasonable benefit/cost will result. Data from the friction meter can be used to monitor and adjust snow and ice control activities and inform travelers of pavement surface conditions. Therefore, final selection of successfully performing technologies will be based on the foundation statements and criteria developed by the study team.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

he number of deer-vehicle accidents in Iowa and around the country has steadily increased during the past 30 years. This i s basically due to: ( 1 ) increased volume of traffic; 12) an expanding network of hard surface roads, especially 4 lane interstates; and (3) a general increase in deer populations. Initidtion of a 55 MPH speed limit in 1974 and gasoline shortages in 1975 reduced deer-vehicle accident rates briefly, but since 1975, rates have continued to climb. Various methods of reducinq these accidents have been attempted in other states. These include: instal lation of rc?flective devlres, deer crossing signs, fencing, underpasses, clearing right--of--waysa,n d controlled hunting to reduce deer population s i z e . These methods have met with varying degrees of success, depending on animal behavior, deet- population fluctuations, method used, topoyr-aphy, road-side vegetation, traffic patterns, and highway configuration. This project was designed to evaluate a new ntethod of reducing deer-vehicle accidents. There are qenerally 4 important aspects of deer-vehicle accidents: danger to human l i f e , vehicle damage, loss of a valuable wildlife resource, and cost of processing accident reports. In !owe, during 1983, there were over 15,OOC) reported deer--vehicle accidents and probably many more that were not reported (Gladfelter 1984). The extent of human injury or death in Iowa i s not known, but studies in southern Michigan show that human injur ies occurred in about 4% of the deer-vehicle accidents (A1 lcn and MrCullough 1976). T h i s would indicate that in Iowa there could have been 200 human injury cases from deer-vehicle accidents i n 1983. These injuries usual 1 occur from secondary collisions when motorists try to avoid a deer on the highway, and hit some other object Vehicle darnaye from these accidents can into thousands of dollars because of the high speed involved and the size of the animal. The total amount of vehicle damage occurring in Iowa is unknown, but if the average vehicle damage was between $500-$800 per accident, estimated property damage would be between $2 1/2--$4 million annually. The value of deer lost in these accidents cannot be estimated, but recreational potential of this natural resource is surely diminished for hunters and wildlife enthusiasts. Also, there ir a great deal of money spent by governmental agencies for manpower to process accident reports and remove dead animals from highways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quality and availability of aggregate for pc concrete stone varies across Iowa. Southwest Iowa is one area of the state that is short of quality aggregates. The concrete stone generally available in the area is limestone from the Argentine or Winterset ledges with an overburden of up to 150 feet. This concrete stone is classified as Class 1 durability and is susceptible to 'ID"-cracking. In addition, the general engineering soil classification rates the soils of southwest Iowa as having the poorest subgrade bearing characteristics in the state. 1 The combination of poor soils and low quality aggregate has contributed to premature deterioration of many miles of portland cement concrete pavement. Research project HR-209 was initiated in 1979 to explore alternative construction methods that may produce better pavements for southwest Iowa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Safety i s a very important aspect o f the highway program. The Iowa DOT initiated an inventory o f the friction values of all paved primary roadways i n 1969. This inventory, with an ASTM E-274 test unit, has continued to the present time. The t e s t i n g frequency varies based upon traffic volume and the previous friction value. Historically , the state o f Iowa constructed a substantial amount o f pcc pavement during the 1928-30 period t o "get Iowa out o f the mud". Some of that pavement has never been resurfaced and has been subjected to more than 50 years o f wear. The textured surface has been worn away and has subsequently polished. Even though some pavements from 15 t o 50 years old continue t o function structurally , because of the loss of friction , they do not provide the desired level o f safety to the driver. As a temporary measure, "Sl ippery -When -Wet " signs have been posted on many older pcc roads due to friction numbers below t h e desirable level. These signs warn the motorist of the current conditions. An economical method of restoring the high quality frictional properties i s needed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The following data was derived from 1391 reports of participating contractors for the annual 2002 through 2011 reporting periods. The workforce data is reflective of one peak work week for highway contractors during the most active time of the season, the last full week of July. The summary data on pages 4 and 5 was compiled by Iowa DOT staff from the 1391 reports received. Interesting changes and trends have been addressed in the written analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This investigation was initiated to determine the causes of a rutting problem that occurred on Interstate 80 in Adair County. 1-80 from Iowa 25 to the Dallas County line was opened to traffic in November, 1960. The original pavement consisted of 4-1/2" of asphalt cement concrete over 12" of rolled stone base and 12" of granular subbase. A 5-1/2" overlay of asphalt cement concrete was placed in 1964. In 1970-1972, the roadway was resurfaced with 3" of asphalt cement concrete. In 1982, an asphalt cement concrete inlay, designed for a 10-year life, was placed in the eastbound lane. The mix designs for all courses met or exceeded all current criteria being used to formulate job mixes. Field construction reports indicate .that asphalt usage, densities, field voids and filler bitumen determinations were well within specification limits on a very consistent basis. Field laboratory reports indicate that laboratory voids for the base courses were within the prescribed limits for the base course and below the prescribed limits for the surface course. Instructional memorandums do indicate that extreme caution should be exercised when the voids are at or near the lower limits and traffic is not minimal. There is also a provision that provides for field voids controlling when there is a conflict between laboratory voids and field voids. It appears that contract documents do not adequately address the directions that must be taken when this conflict arises since it can readily be shown that laboratory voids must be in the very low or dangerous range if field voids are to be kept below the maximum limit under the current density specifications. A rut depth survey of January, 1983, identified little or no rutting on this section of roadway. Cross sections obtained in October, 1983, identified rutting which ranged from 0 to 0.9" with a general trend of the rutting to increase from a value of approximately 0.3" at MP 88 to a rut depth of 0.7" at MP 98. No areas of significant rutting were identified in the inside lane. Structural evaluation with the Road Rater indicated adequate structural capacity and also indicated that the longitudinal subdrains were functioning properly to provide adequate soil support values. Two pavement sections taken from the driving lane indicated very little distortion in the lower 7" base course. Essentially all of the distortion had occurred in the upper 2" base course and the 1..;1/2" surface course. Analysis of cores taken from this section of Interstate 80 indicated very little densification of either the surface or the upper or lower base courses. The asphalt cement content of both the Type B base courses and the Type A surface course were substantially higher than the intended asphalt cement content. The only explanation for this is that the salvaged material contained a greater percent of asphalt cement than initial extractions indicated. The penetration and viscosity of the blend of new asphalt cement and the asphalt cement recovered from the salvaged material were relatively close to that intended for this project. The 1983 ambient temperatures were extremely high from June 20 through September 10. The rutting is a result of a combination of adverse factors including, (1) high asphalt content, (2) the difference between laboratory and field voids, (3) lack of intermediate sized crushed particles, (4) high ambient temperatures. The high asphalt content in the 2" upper base course produced an asphalt concrete mix that did not exhibit satisfactory resistance to deformation from heavy loading. The majority of the rutting resulted from distortion of the 2" upper base lift. Heater planing is recommended as an interim corrective action. Further recommendation is to design for a 20-year alternative by removing 2-1/2" of material from the driving lane by milling and replacing with 2-1/2" of asphalt concrete with improved stability. This would be .followed by placing 1-1/2" of high quality resurfacing on the entire roadway. Other recommendations include improved density and stability requirements for asphalt concrete on high traffic roadways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single-vehicle run-off-road crashes are the most common crash type on rural two-lane Iowa roads. Rumble strips have proven effective in mitigating these crashes, but the strips are commonly installed in paved shoulders on higher-volume roads that are owned by the State of Iowa. Lower-volume paved rural roads owned by local agencies do not commonly feature paved shoulders but frequently experience run-off-road crashes. This project involved installing rumble stripes, which are a combination of conventional rumble strips with a painted edge line placed on the surface of the milled area, along the edge of the travel lanes, but at a narrow width to avoid possible intrusion into the normal vehicle travel paths. The research described in this report was part of a project funded by the Federal Highway Administration, Iowa Highway Research Board, and Iowa Department of Transportation to evaluate the effectiveness of edge-line rumble strips in Iowa. The project evaluated the effectiveness of rumble stripes in reducing run-off-road crashes and in improving the longevity and wet-weather visibility of edge-line markings. This project consisted of two phases. The first phase was to select pilot study locations, select a set of test sites, install rumble stripes, summarize lessons learned during installation, and provide a preliminary assessment of the rumble stripes’ performance. The purpose of this report was to document results from Phase II. A before and after crash analysis was conducted to assess whether use of the treatment had resulted in fewer crashes. However, due to low sample size, results of the analysis were inconclusive. Lateral position was also evaluated before and after installation of the treatment to determine whether vehicles engaged in better lane keeping. Pavement marking wear was also assessed.