520 resultados para Stamps taxes
Resumo:
Since the beginning of channel straightening at the turn of the century, the streams of western Iowa have degraded 1.5 to 5 times their original depth. This vertical degradation is often accompanied by increases in channel widths of 2 to 4 times the original widths. The deepening and widening of these streams has jeopardized the structural safety of many bridges by undercutting footings or pile caps, exposing considerable length of piling, and removing soil beneath and adjacent to abutments. Various types of flume and drop structures have been introduced in an effort to partially or totally stabilize these channels, protecting or replacing bridge structures. Although there has always been a need for economical grade stabilization structures to stop stream channel degradation and protect highway bridges and culverts, the problem is especially critical at the present time due to rapidly increasing construction costs and decreasing revenues. Benefits derived from stabilization extend beyond the transportation sector to the agricultural sector, and increased public interest and attention is needed.
Resumo:
Quality granular materials suitable for building all-weather roads are not uniformly distributed throughout the state of Iowa. For this reason the Iowa Highway Research Board has sponsored a number of research programs for the purpose of developing new and effective methods for making use of whatever materials are locally available. This need is ever more pressing today due to the decreasing availability of road funds and quality materials, and the increasing costs of energy and all types of binder materials. In the 1950s, Professor L. H. Csanyi of Iowa State University had demonstrated both in the laboratory and in the field, in Iowa and in a number of foreign countries, the effectiveness of preparing low cost mixes by stabilizing ungraded local aggregates such as gravel, sand and loess with asphalt cements using the foamed asphalt process. In this process controlled foam was produced by introducing saturated steam at about 40 psi into heated asphalt cement at about 25 psi through a specially designed and properly adjusted nozzle. The reduced viscosity and the increased volume and surface energy in the foamed asphalt allowed intimate coating and mixing of cold, wet aggregates or soils. Through the use of asphalt cements in a foamed state, materials normally considered unsuitable could be used in the preparation of mixes for stabilized bases and surfaces for low traffic road construction. By attaching the desired number of foam nozzles, the foamed asphalt can be used in conjunction with any type of mixing plant, either stationary or mobile, batch or continuous, central plant or in-place soil stabilization.
Resumo:
An optimum allocation model has been utilized to examine the existing allocation of highway segments to maintenance garages in the Hamlin study area. The model has also been used to evaluate the financial effect of closing the garage at Hamlin. The examination of the study area shows that only three of 48 highway segments should be reallocated at an annual operational savings of approximately $1,400. The study concludes there would be an annual operational savings of approximately 128,700 if the garage at Hamlin were closed.
Resumo:
During the 1980-81 fiscal year, the Office of Transportation Research conducted a study to examine the existing locations of highway maintenance garages in a study area provided by the Office of Maintenance. The study successfully identified a model referred to as an "Optimum Allocation Model" for examining highway maintenance garage locations in a given area. This model can optimally assign highway segments to maintenance garages and can also be used to evaluate the financial impact of closing or relocating a highway maintenance garage utilizing the highway maintenance-related data currently available at the Iowa DOT. The present study employs the optimum allocation model to examine the existing highway maintenance garage locations in two selected areas in the southeastern and southwestern parts of the state. These areas were selected by the Office of Maintenance and are referred to as "Study Area No. 1" and "Study Area No. 2" in this study. These study areas are shown in Appendices 1 and 2, respectively.
Examination of Existing Highway Maintenance Garage Locations in Tama and Blairstown Study Area, 1983
Resumo:
An optimum allocation model has been utilized to examine the existing allocation of highway segments to maintenance garages in the Tama and Blairstown study area. The model has also been used to evaluate the financial impact of closing the highway maintenance garages at Tama and Blairstown and building a new garage at the junction of U.S. 30 and Iowa 21. The examination of the study area shows that only 13 of 91 highway segments were reallocated under optimum procedures at an annual operational savings of approximately $13,200. The study concludes there would be an annual operational savings of approximately $48,200 if the garages at Tama and Blairstown were closed and a new garage was built at the junction of U.S. 30 and Iowa 21.
Resumo:
A linear programming model is used to optimally assign highway segments to highway maintenance garages using existing facilities. The model is also used to determine possible operational savings or losses associated with four alternatives for expanding, closing and/or relocating some of the garages in a study area. The study area contains 16 highway maintenance garages and 139 highway segments. The study recommends alternative No. 3 (close Tama and Blairstown garages and relocate new garage at Jct. U.S. 30 and Iowa 21) at an annual operational savings of approximately $16,250. These operational savings, however, are only the guidelines for decisionmakers and are subject to the required assumptions of the model used and limitations of the study.
Resumo:
In June 2001, the Iowa Department of Transportation announced the imminent closure and disposal of selected highway maintenance facilities as part of cost-cutting measures mandated by the Iowa legislature, an action that was to be completed by July 31, 2001. The DOT recognized that some of these facilities might be "historical sites," which in the Iowa Code are defined as any district, site, building or structure listed on the National Register of Historic Places or identified as eligible for listing in the National Register by the State Historic Preservation Office. Section 303 of the Code requires state agencies to "enter into an agreement with the Department of Cultural Affairs [in which the SHPO is located] to ensure the proper management, maintenance and development of historical sites." The DOT saw this disposal action as an opportunity to compile information about its highway maintenance facilities that could be employed in development of a management program for historic highway maintenance facilities in the future. Subsequently, the DOT authorized a similar study of highway weigh stations.
Resumo:
Highway maintenance engineers and administrators are often confronted with a number of problems related to highway maintenance work programs. One of these problems is concerned with determining the optimum number and locations of highway maintenance garages in a given area. Serious decline in highway revenues and a high inflation rate have made it necessary to examine existing maintenance practices and to allocate reduced financial resources more effectively and efficiently. Searching for and providing of reasonable solutions to these problems is the focus of this research project. The methodology used is to identify and modify for use (if necessary) those models which have already been developed. Models which could give optimum number and locations of highway maintenance garages were found to be too theoretical and/or practically infeasible. Consequently, research focus was shifted from these models to other models that could compare alternatives and select the best among these alternatives. Three such models -- the Alabama model, California model, and Louisiana model, were identified and studied.
Resumo:
Audit report on the Great River Regional Waste Authority for the year ended June 30, 2013
Resumo:
Kossuth County is located in North Central Iowa bordering on the State of Minnesota. It is the largest county in Iowa consisting of 28 congressional townships. The population of the county is 23,000 of which 11,000 people live in the rural area. There are 13 towns located in the county with the county seat, Algona, being the largest with a population of 6,100. Major industry of the area is grain farming with some beef and hog production. Naturally, where there is good grain farm land it follows that there is poor soil available for road construction and pavements. However, below the 3 to 4 feet of good farm land of Kossuth there is present a good grade of clay soil which does make an adequate base for surfacing when placed and compacted on top of the roadbed. As early as 1950, the then Kossuth County Engineer, H.M. Smith, embarked on a program of stage construction in building new grades and pavements. The goal of his program was primarily to conserve the county's rapidly dwindling supply of surfacing materials, and also, to realize the side effects of providing smooth and dustless roads for the public. Engineer Smith was fully aware of the poor soils that existed for road construction, but he also knew about the good clay that lay below the farm soil. Consequently, in his grading program he insisted that road ditches be dug deep enough to allow the good clay soil to be compacted on top of the roadbed. The presence of the compacted clay on top of the road resulted in a briding affect over the farm soil. The stage construction program satisfied the objectives of aggregate construction and dust control but did generate other problems which we are now trying to solve as economically as possible.
Resumo:
This report documents the Iowa Department of Transportation's accomplishments and ongoing efforts in response to 39 recommendations proposed by the Governor's Blue Ribbon Transportation Task Force at the end of 1995. Governor Terry Branstad challenged the Task Force to "maximize the benefits of each dollar spent from the Road Use Tax Fund."
Resumo:
As of December 31, 1970 there were 57,270 miles of Local Secondary roads and 32,958 miles of Farm to Market roads in the Iowa secondary road system. The Local Secondary system carried a traffic load of 2,714,180 daily vehicle miles, accounting for 32% of all traffic in the secondary system. For all Local Secondary roads having some form of surfacing, 98% were surfaced with gravel or crushed stone. During the 1970 construction year 335 miles of surfaced roads were constructed in the Local Secondary system with 78% being surfaced with gravel or crushed stone. The total maintenance expenditure for all secondary roads in Iowa during 1970 amounted to $40,086,091. Of this, 42%, or $17,020,332, was spent for aggregate replacement on existing gravel or crushed stone roads with an additional 31% ($12,604,456) being spent on maintenance other than resurfacing. This amounts to 73% of the total maintenance budget and are the largest two maintenance expenditure items out of a list of 10 ranging from bridges to drainage assessments. The next largest item was 7%, for maintenance of existing flexible bases. Three concurrent phases of study were included in this project: (1) laboratory screenings studies of various additives thought to have potential for long-lasting dust palliation, soil additive strength, durability, and additive retention potential; (2) test road construction using those additives that indicated promise for performance-serviceability usage; and (3) observations and tests of constructed sections for evaluation of the additive's contribution to performance and serviceability as well as the relationship to initial costs.
Resumo:
A combined study of dust control and low-cost surface improvements of soil and aggregate materials for immediate (and intermediate) use as a treated surface course is being conducted in three concurrent phases: (1) laboratory screening of various additives thought to have potential for long-lasting dust palliation, soil-additive strength, durability, and additive retention potential; (2) test road construction, using those additives from the screening studies that indicate promise for performance and serviceability; and (3) observation and tests of constructed sections for evaluation of the additive's contribution to performance and serviceability as well as relationship to initial costs. A brief review is presented of the problem, some methods of measuring it, previously adopted approaches to it, project field tests and a portion of the results thus far, and portions of the laboratory work accomplished in the screening studies.
Resumo:
The Rock Island Centennial Bridge spanning the Mississippi River between Rock Island, Illinois and Davenport, Iowa was opened to traffic on July 12, 1940. It is a thoroughly modern, four-lane highway bridge, adequate in every respect for present day high speed passenger and transport traffic. The structure is ideally situated to provide rapid transit between the business districts of Rock Island and Davenport and serves not only the local or shuttle traffic in the Tri-City Area, but also heavy through motor travel on U.S. Highways 67 and 150. The Centennial Bridge is notable in several respects. The main spans are box girder rib tied arches, a type rather unusual in America and permitting simplicity in design with pleasing appearance. The Centennial Bridge is the only bridge across the Mississippi providing for four lanes of traffic with separation of traffic in each direction. It is a toll bridge operating alongside a free bridge and has the lowest rates of toll of any toll bridge on the Mississippi River. It was financed entirely by the City of Rock Island with no obligation on the taxpayers; there was no federal or state participation in the financing. But perhaps the most outstanding feature of the new bridge is its great need. A few remarks on the communities served by the new structure, the services rendered, and some statistics on cross-river traffic in the Tri-City Area will emphasize the reasons for constructing the Centennial Bridge.
Resumo:
Audit report on the Rathbun Area Solid Waste Commission for the year ended June 30, 2014