370 resultados para Concrete-Filled steel tubular columns
Resumo:
The early-age thermal development of structural mass concrete elements has a significant impact on the future durability and longevity of the elements. If the heat of hydration is not controlled, the elements may be susceptible to thermal cracking and damage from delayed ettringite formation. In the Phase I study, the research team reviewed published literature and current specifications on mass concrete. In addition, the team observed construction and reviewed thermal data from the westbound (WB) I-80 Missouri River Bridge. Finally, the researchers conducted an initial investigation of the thermal analysis software programs ConcreteWorks and 4C-Temp&Stress. The Phase II study is aimed at developing guidelines for the design and construction of mass concrete placements associated with large bridge foundations. This phase included an additional review of published literature and a more in-depth investigation of current mass concrete specifications. In addition, the mass concrete construction of two bridges, the WB I-80 Missouri River Bridge and the US 34 Missouri River Bridge, was documented. An investigation was conducted of the theory and application of 4C-Temp&Stress. ConcreteWorks and 4C-Temp&Stress were calibrated with thermal data recorded for the WB I-80 Missouri River Bridge and the US 34 Missouri River Bridge. ConcreteWorks and 4C-Temp&Stress were further verified by means of a sensitivity study. Finally, conclusions and recommendations were developed, as included in this report.
Resumo:
Bridge deck and substructure deterioration due to the corrosive effects of deicing chemicals on reinforcing steel is a problem facing many transportation agencies. The main concern is protection of older bridges with uncoated reinforcing steel. Many different methods have been tried over the past years to repair bridge decks. The Iowa system of bridge deck rehabilitation has proven to be very effective. It consists of scarifying the deck surface, removing any deteriorated concrete, and overlaying with low slump dense concrete. Another rehabilitation method that has emerged is cathodic protection. It has been used for many years in the protection of underground pipelines and in 1973 was first installed on a bridge deck. Cathodic protection works by applying an external source of direct current to the embedded reinforcing steel, thereby changing the electrochemical process of corrosion. The corroding steel, which is anodic, is protected by changing it to a cathodic state. The technology involved in cathodic protection as applied to bridge decks has improved over the last 12 years. One company marketing new technology in cathodic protection systems is Raychem Corporation of Menlo Park, California. Their system utilizes a Ferex anode mesh that distributes the impressed direct current over the deck surface. Ferex mesh was selected because it seemed readily adaptable to the Iowa system of bridge deck rehabilitation. The bridge deck would be scarified, deteriorated concrete removed, Ferex anode mesh installed, and overlaid with low slump dense concrete. The Federal Highway Administration (FHWA) promotes cathodic protection under Demonstration Project No. 34, "Cathodic Protection for Reinforced Concrete Bridge Decks."
Resumo:
The ends of prestressed concrete beams under expansion joints are often exposed to moisture and chlorides. Left unprotected, the moisture and chlorides come in contact with the ends of the prestressing strands and/or the mild reinforcing, resulting in corrosion. Once deterioration begins, it progresses unless some process is employed to address it. Deterioration can lead to loss of bearing area and therefore a reduction in bridge capacity. Previous research has looked into the use of concrete coatings (silanes, epoxies, fiber-reinforced polymers, etc.) for protecting prestressed concrete beam ends but found that little to no laboratory research has been done related to the performance of these coatings in this specific type of application. The Iowa Department of Transportation (DOT) currently specifies coating the ends of exposed prestressed concrete beams with Sikagard 62 (a high-build, protective, solvent-free, epoxy coating) at the precast plant prior to installation on the bridge. However, no physical testing of Sikagard 62 in this application has been completed. In addition, the Iowa DOT continues to see deterioration in the prestressed concrete beam ends, even those treated with Sikagard 62. The goals of this project were to evaluate the performance of the Iowa DOT-specified beam-end coating as well as other concrete coating alternatives based on the American Association of State Highway and Transportation Officials (AASHTO) T259-80 chloride ion penetration test and to test their performance on in-service bridges throughout the duration of the project. In addition, alternative beam-end forming details were developed and evaluated for their potential to mitigate and/or eliminate the deterioration caused by corrosion of the prestressing strands on prestressed concrete beam ends used in bridges with expansion joints. The alternative beam-end details consisted of individual strand blockouts, an individual blockout for a cluster of strands, dual blockouts for two clusters of strands, and drilling out the strands after they are flush cut. The goal of all of the forming alternatives was to offset the ends of the prestressing strands from the end face of the beam and then cover them with a grout/concrete layer, thereby limiting or eliminating their exposure to moisture and chlorides.
Resumo:
None provided.
Resumo:
The discrepancies between the designed and measured camber of precast pretensioned concrete beams (PPCBs) observed by the Iowa DOT have created challenges in the field during bridge construction, causing construction delays and additional costs. This study was undertaken to systematically identify the potential sources of discrepancies between the designed and measured camber from release to time of erection and improve the accuracy of camber estimations in order to minimize the associated problems in the field. To successfully accomplish the project objectives, engineering properties, including creep and shrinkage, of three normal concrete and four high-performance concrete mix designs were characterized. In parallel, another task focused on identifying the instantaneous camber and the variables affecting the instantaneous camber and evaluated the corresponding impact of this factor using more than 100 PPCBs. Using a combination of finite element analyses and the time-step method, the long-term camber was estimated for 66 PPCBs, with due consideration given to creep and shrinkage of concrete, changes in support location and prestress force, and the thermal effects. Utilizing the outcomes of the project, suitable long-term camber multipliers were developed that account for the time-dependent behavior, including the thermal effects. It is shown that by using the recommended practice for the camber measurements together with the proposed multipliers, the accuracy of camber prediction will be greatly improved. Consequently, it is expected that future bridge projects in Iowa can minimize construction challenges resulting from large discrepancies between the designed and actual camber of PPCBs during construction.
Resumo:
Soil consolidation and erosion caused by roadway runoff have exposed the upper portions of steel piles at the abutments of numerous bridges, leaving them susceptible to accelerated corrosion rates due to the abundance of moisture, oxygen, and chlorides at these locations. This problem is compounded by the relative inaccessibility of abutment piles for close-up inspection and repair. The objective of this study was to provide bridge owners with recommendations for effective methods of addressing corrosion of steel abutment piles in existing and future bridges A review of available literature on the performance and protection of steel piles exposed to a variety of environments was performed. Eight potential coating systems for use in protecting existing and/or new piles were selected and subjected to accelerated corrosion conditions in the laboratory. Two surface preparation methods were evaluated in the field and three coating systems were installed on three piles at an existing bridge where abutment piles had been exposed by erosion. In addition, a passive cathodic protection (CP) system using sacrificial zinc anodes was tested in the laboratory. Several trial flowable mortar mixes were evaluated for use in conjunction with the CP system. For existing abutment piles, application of a protective coating system is a promising method of mitigating corrosion. Based on its excellent performance in accelerated corrosion conditions in the laboratory on steel test specimens with SSPC-SP3, -SP6, and -SP10 surface preparations, glass flake polyester is recommended for use on existing piles. An alternative is epoxy over organic zinc rich primer. Surface preparation of existing piles should include abrasive blast cleaning to SSPC-SP6. Although additional field testing is needed, based on the results of the laboratory testing, a passive CP system could provide an effective means of protecting piles in existing bridges when combined with a pumped mortar used to fill voids between the abutment footing and soil. The addition of a corrosion inhibitor to the mortar appears to be beneficial. For new construction, shop application of thermally sprayed aluminum or glass flake polyester to the upper portion of the piles is recommended.
Resumo:
Portland cement pervious concrete (PCPC) is being used more frequently due to its benefits in reducing the quantity of runoff water,improving water quality, enhancing pavement skid resistance during storm events by rapid drainage of water, and reducing pavement noise. In the United States, PCPC typically has high porosity and low strength, which has resulted in the limited use of pervious concrete, especially in hard wet freeze environments (e.g., the Midwestern and Northeastern United States and other parts of the world).Improving the strength and freeze-thaw durability of pervious concrete will allow an increase in its use in these regions. The objective of this research is to develop a PCPC mix that not only has sufficient porosity for stormwater infiltration, but also desirable strength and freeze-thaw durability. In this research, concrete mixes were designed with various sizes and types of aggregates, binder contents, and admixture amounts. The engineering properties of the aggregates were evaluated. Additionally, the porosity, permeability, strength, and freeze-thaw durability of each of these mixes was measured. Results indicate that PCPC made with single-sized aggregate has high permeability but not adequate strength. Adding a small percent of sand to the mix improves its strength and freeze-thaw resistance, but lowers its permeability. Although adding sand and latex improved the strength of the mix when compared with single-sized mixes, the strength of mixes where only sand was added were higher. The freeze-thaw resistance of PCPC mixes with a small percentage of sand also showed 2% mass loss after 300 cycles of freeze-thaw. The preliminary results of the effects of compaction energy on PCPC properties show that compaction energy significantly affects the freeze-thaw durability of PCPC and, to a lesser extent, reduces compressive strength and split strength and increases permeability.
Resumo:
The aim of the present study is to investigate the effect of low-permeability concrete, made with reduced water‐to‐binder ratios (w/b) and/or supplementary cementitious materials (SCMs), on the need for air entrainment to achieve freezing‐thawing (F‐T) durability. In the present study, concrete mixes were made with different types of cement (Types I and IP), with or without fly ash replacement (15%), with different water‐to‐binder ratios (w/b =0.25, 0.35, 0.45 and 0.55), and with or without air entraining agent (AEA). All concrete mixtures were controlled to have a similar slump by using different dosages of superplasticizer. The rapid chloride permeability and F-T durability of the concrete samples were determined according to ASTM C1202 and ASTM C666A, respectively. The air void structure of the concrete was studied using the Air Void Analyzer, RapidAir, and porosity tests (ASTM C642). In addition, the general concrete properties, such as slump, air content, unit weight, and 28‐day compressive strength, were evaluated. The results indicate that all concrete mixes with proper air entrainment (ASTM C231 air content ≥ 6%) showed good F‐T resistance (durability factor ≥85%). All concrete mixes without AEA showed poor F‐T resistance (durability factor < 40%), except for one mix that had very low permeability and high strength. This was the concrete made with Type IP cement and with a w/b of 0.25, which had a permeability of 520 coulombs and a compressive strength of 12,760 psi (88 MPa). There were clear relationships between the F‐T durability and hardened concrete properties of non–air entrained concrete. However, such relationships did not exist in concrete with AEA. For concrete with AEA, good F‐T durability was associated with an air void spacing factor ≤ 0.28 mm (by AVA) or ≤ 0.22 mm (by RapidAir).
Resumo:
The Iowa Department of Transportation (IaDOT) was interested in investigating the use of epoxy adhesive anchorages for the attachment of posts used in the BR27C combination bridge rail system. Alternative anchorage concepts were developed using a modified version of the ACI 318-11 procedures for embedded anchor design. Four design concepts were developed for review by IaDOT, including: (1) a four-bolt square anchorage, (2) a four-bolt spread anchorage, (3) a twobolt centered anchorage, and (4) a two-bolt offset anchorage. IaDOT representatives selected the four-bolt spread anchorage and the two-bolt offset anchorage as the preferred designs for evaluation. In addition to these two proposed configurations, IaDOT also requested that the researchers evaluate a third option that had been previously installed on the US-20 bridge near Hardin, IA. The proposed alternative anchorages and the original cast-in-place anchorage for the BR27C combination bridge rail were evaluated through dynamic component testing. The test of the original cast-in-place anchorage was used a baseline for comparison with the alternative designs. Test no. IBP-1 of the original cast-in-place anchorage developed a peak load of 22.9 kips (101.9 kN) at a deflection of 1.5 in. (38 mm). All three of the tested alternative anchorages provided greater load capacity than the original cast-in-place design and were deemed acceptable surrogates. Of the three alternative designs, the two-bolt offset design was deemed the best option.
Resumo:
Of the approximately 25,000 bridges in Iowa, 28% are classified as structurally deficient, functionally obsolete, or both. The state of Iowa thus follows the national trend of an aging infrastructure in dire need of repair or replacement with a relatively limited funding base. Therefore, there is a need to develop new materials with properties that may lead to longer life spans and reduced life-cycle costs. In addition, new methods for determining the condition of structures are needed to monitor the structures effectively and identify when the useful life of the structure has expired or other maintenance is needed. High-performance steel (HPS) has emerged as a material with enhanced weldability, weathering capabilities, and fracture toughness compared to conventional structural steels. In 2004, the Iowa Department of Transportation opened Iowa's first HPS girder bridge, the East 12th Street Bridge over I-235 in Des Moines, Iowa. The objective of this project was to evaluate HPS as a viable option for use in Iowa bridges with a continuous structural health monitoring (SHM) system. The scope of the project included documenting the construction of the East 12th Street Bridge and concurrently developing a remote, continuous SHM system using fiber-optic sensing technology to evaluate the structural performance of the bridge. The SHM system included bridge evaluation parameters, similar to design parameters used by bridge engineers, for evaluating the structure. Through the successful completion of this project, a baseline of bridge performance was established that can be used for continued long-term monitoring of the structure. In general, the structural performance of the HPS bridge exceeded the design parameters and is performing well. Although some problems were encountered with the SHM system, the system functions well and recommendations for improving the system have been made.
Resumo:
The coarse aggregates used for Portland Cement concrete in southwest Iowa have exhibited a poor serviceability. This early failure is attributed to a characteristic commonly referred as "D" cracking. "D" line cracking is a discolored area of concrete caused by many fine, parallel hairline cracks. "D" line cracking is primarily caused by the movement of water in and through coarse aggregate with a unique pore structure. The presence of the water in the aggregates at the time of freezing causes the "D" cracking to occur and early failure. By making the pore structure less permeable to moisture, it is thought the durability factor of the concrete should increase. By drying the aggregate before mixing and then mixing with the cement, the particles of cement should enter the outer pore structure, and upon hydration make the pore structure less permeable to moisture.
Resumo:
This report is concerned with the prediction of the long-time creep and shrinkage behavior of concrete. It is divided into three main areas. l. The development of general prediction methods that can be used by a design engineer when specific experimental data are not available. 2. The development of prediction methods based on experimental data. These methods take advantage of equations developed in item l, and can be used to accurately predict creep and shrinkage after only 28 days of data collection. 3. Experimental verification of items l and 2, and the development of specific prediction equations for four sand-lightweight aggregate concretes tested in the experimental program. The general prediction equations and methods are developed in Chapter II. Standard Equations to estimate the creep of normal weight concrete (Eq. 9), sand-lightweight concrete (Eq. 12), and lightweight concrete (Eq. 15) are recommended. These equations are developed for standard conditions (see Sec. 2. 1) and correction factors required to convert creep coefficients obtained from equations 9, 12, and 15 to valid predictions for other conditions are given in Equations 17 through 23. The correction factors are shown graphically in Figs. 6 through 13. Similar equations and methods are developed for the prediction of the shrinkage of moist cured normal weight concrete (Eq. 30}, moist cured sand-lightweight concrete (Eq. 33}, and moist cured lightweight concrete (Eq. 36). For steam cured concrete the equations are Eq. 42 for normal weight concrete, and Eq. 45 for lightweight concrete. Correction factors are given in Equations 47 through 52 and Figs., 18 through 24. Chapter III summarizes and illustrates, by examples, the prediction methods developed in Chapter II. Chapters IV and V describe an experimental program in which specific prediction equations are developed for concretes made with Haydite manufactured by Hydraulic Press Brick Co. (Eqs. 53 and 54}, Haydite manufactured by Buildex Inc. (Eqs. 55 and 56), Haydite manufactured by The Cater-Waters Corp. (Eqs. 57 and 58}, and Idealite manufactured by Idealite Co. (Eqs. 59 and 60). General prediction equations are also developed from the data obtained in the experimental program (Eqs. 61 and 62) and are compared to similar equations developed in Chapter II. Creep and Shrinkage prediction methods based on 28 day experimental data are developed in Chapter VI. The methods are verified by comparing predicted and measured values of the long-time creep and shrinkage of specimens tested at the University of Iowa (see Chapters IV and V) and elsewhere. The accuracy obtained is shown to be superior to other similar methods available to the design engineer.
Resumo:
General equations are presented for predicting loss of prestress and camber of both composite and non- composite prestressed concrete structures. Continuous time functins of all parameters needed to solve the equations are given, and sample results included. Computed prestress loss and camber are compared with experimental data for normal weight and lightweight concrete. Methods are also presented for predicting the effect of non-prestressed tension steel in reducing time-dependent loss of prestress and camber, and for the determination of short-time deflections of uncracked and cracked prestressed members. Comparisons with experimental results are indicated for these partially prestressed methods.
Resumo:
It is the objective of this project to determine, via field tests, the long term effectiveness of several available systems as their ability to protect concrete surfaces against the intrusion of chloride ions. Early concepts of this project included utilizing personnel from several offices within the Highway Division of the Iowa Department of Transportation. Cooperation and coordination with regularly scheduled activities were considered imperative. A meeting for this purpose was held on April 16, 1980. This meeting was attended by the investigators, Mr. Bernard C. Brown, Office of Materials, Mr. Richard Merritt, District 6 Materials Engineer, Mr. John Saunders, District 6 Maintenance Engineer, and Mr. James Phinney, Resident Maintenance Engineer.
Resumo:
This report addresses the field testing and analysis of those results to establish the behavior of the original Clive Road Bridge that carried highway traffic over Interstate 80 (I-80) in the northwest region of Des Moines, Iowa. The bridge was load tested in 1959, shortly after its construction and in 1993, just prior to its demolition. This report presents some of the results from both field tests, finite element predictions of the behavior of aluminum bridge girders, and load distribution studies.